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Abstract

The traditional molecular-based identification (TMID) technique of new infections from
genome sequences (GSs) has made significant contributions so far. However, due to the
sensitive nature of the medical data, the TMID technique of transferring the patient’s
data to the central machine or server may create serious privacy and security issues. In
recent years, the progression of deep federated learning (DFL) and its remarkable success
in many domains has guided as a potential solution in this field. Therefore, this thesis
work proposes a dependable and privacy-preserving DFL-based identification model of
new infections from GSs. The unique contributions include automatic effective feature
selection, which is best suited for the identification of new infections, designing a depend-
able and privacy-preserving DFL-based LeNet model, and evaluating real-world data. To
this end, a comprehensive experimental performance evaluation has been conducted. The
dependable proposed model has an overall accuracy of 99.12% after independently and
identically distributing (IID) the dataset among 6 clients. Moreover, the proposed model
has a precision of 98.23%, recall of 98.04%, f1-score of 96.24%, Cohens kappa of 83.94%,
and ROC AUC of 98.24% for the same configuration, which is a noticeable improvement
when compared to the other benchmark models. The proposed dependable model, along
with empirical results, is encouraging enough to recognize as an alternative for the identi-
fication of new infections amongst other virus strains from genome sequences by ensuring
proper privacy and security of patients’ data.
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Chapter 1

Introduction

Why should we develop a privacy-preserving method to identify new infections amongst

other virus strains from genome sequences? The ultimate answer is, of course, to ensure

the proper privacy and security of patients data. However, some readers may expect a

more detailed answer. They have many reasons and consequences for expecting detailed

answers. To investigate those reasons, we first identified our research questions and tried to

address those questions throughout this thesis. The first question is whether the previously

developed methods for the identification of new infections amongst other virus strains

from genome sequences are capable of ensuring data privacy and security. Then, which

methods and tools should be developed to ensure proper privacy and security of patients’

data? Furthermore, in comparison to other relevant work, how will the proposed model

ensure privacy and security? Finally, will the proposed model be dependable? Therefore,

it is a major concern how we develop a dependable model that can efficiently identify

new infections amongst other virus strains from genome sequences by ensuring proper

privacy and security of patients’ data. We have discussed the whole procedure in successive

chapters throughout this book. In that continuity, this chapter typically describes the

scope of this thesis and gives a brief explanation and summary of this thesis. We also

thoroughly discussed the problem statements and expected contributions of this thesis.

Finally, we discussed the reader’s background, who will feel more comfortable with this

paradigm, and the overall idea of this thesis before starting to read the full document.
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CHAPTER 1. INTRODUCTION

1.1 General Background

The SARS-CoV-2 virus, also known as COVID-19, is a novel human-infecting coronavirus

that was first identified in a patient with pneumonia in Wuhan, China, in December 2019

using next-generation sequencing techniques [1–3]. The new variant of this virus has since

spread around the world, affecting millions of people every day [2, 4]. COVID-19 was

declared a world emergency on January 30, 2020, and a pandemic on March 11, 2020,

by the World Health Organization (WHO) [5, 6]. When a pandemic outbreak occurs,

it’s critical to decide whether the infection is caused by a new virus or a well-known

virus [1, 2, 7]. This means that early identification of new infections from other virus

strains can help scientists control the transmission rates and limit the risks [7]. Because

of the genetic similarities among the viruses, it is challenging to identify new infections

from others [8]. Furthermore, patients suspected of being infected with this infection may

also show symptoms that are similar to other types of respiratory infections [1, 9]. So, it

is important to accurately and efficiently identify this new infection from similar types of

viruses to control the outbreak of the new virus while ensuring proper security and privacy

of the patients’ data.

Reverse
Transcription

qPCR
Optimization

Figure 1.1: The overall scenario of the TMID-based RT-qPCR technique.
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1.2. SPECIFIC BACKGROUND

The traditional molecular-based identification (TMID) technique of new infections from

viral genome sequences (VGSs) is quantitative fluorescence-based reverse transcription-

polymerase chain reaction (RT-qPCR) [10–12]. The technique combines reverse transcrip-

tion-polymerase chain reaction (RT-PCR) and quantitative polymerase chain reaction

(qPCR) to determine the number of RNA levels in a qPCR reaction using complementary

deoxyribonucleic acid (cDNA) [10, 13]. The ORF1ab and N genes were used in the RT-

qPCR technique to identify new infections from VGSs. [14, 15]. Figure 1.1 shows the

overall scenario of the traditional molecular-based RT-qPCR technique.

1.2 Specific Background

The background of developing a privacy-preserving and dependable method to identify

new infections among other virus strains from genome sequences encompasses several key

aspects. Here are the specific background considerations for such a method:

• Privacy Concerns: Genome sequences contain highly sensitive and personal infor-

mation that can be used to identify individuals and potentially disclose their health

conditions. Preserving patient privacy is of utmost importance to ensure ethical

and legal compliance, as well as to maintain public trust in genomic research and

healthcare systems.

• Data Security: The genomic data used for identifying new infections needs to be

stored, processed, and transmitted securely. Robust security measures are essential

to prevent unauthorized access, data breaches, and potential misuse of genomic

information. Protecting data integrity and confidentiality is crucial for maintaining

trust in the identification process.

• Distributed Data Sources: Genome sequences are often distributed across mul-

tiple institutions, laboratories, or databases. Collaborative identification of new

infections requires a method that can leverage the collective knowledge from diverse

data sources while respecting the autonomy and ownership of each dataset. The
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CHAPTER 1. INTRODUCTION

method should allow for decentralized analysis without the need to centralize or

share raw genomic data.

• Dependability and Accuracy: The identification method must be dependable,

ensuring accurate and reliable results. False positives or false negatives can have

significant consequences in public health and disease management. The method

should be rigorously tested, validated, and optimized to provide high accuracy and

consistency in identifying new infections among various virus strains.

• Efficient and Scalable Solutions: As the volume of genomic data grows rapidly,

the identification method should be designed for scalability. It should handle large

datasets and be computationally efficient to process and analyze the genome se-

quences within reasonable time-frames. Scalability is crucial for timely identification

and response to emerging infections.

• Regulatory and Ethical Considerations: Compliance with regulatory guide-

lines, such as data protection laws and ethical guidelines for human subject research,

is essential. The method should adhere to these regulations to ensure legal and eth-

ical use of genomic data. It should also address potential biases or disparities in the

identification process to avoid unintended consequences.

Developing a privacy-preserving and dependable method to identify new infections among

other virus strains from genome sequences requires addressing these background consid-

erations. By incorporating robust privacy-preserving techniques, ensuring data security,

leveraging distributed data sources, emphasizing dependability and accuracy, enabling

efficiency and scalability, and complying with regulatory and ethical guidelines, a com-

prehensive and effective method can be developed to address the challenges of identifying

new infections while protecting patient privacy.

1.3 Motivation of the Research Work

The TMID technique achieved a negative rate of 17.84% when sputum instances were

used in moderate illness cases and 11.15% for severe illness cases [7, 16]. Also, when
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used on nasal swabs, the technique achieved negative rates of 26.70% and 27.04% in

moderate and severe cases, respectively [16]. Furthermore, when used on throat swabs,

the technique achieved a negative rate of 40.0% in severe cases and 38.7% in moderate

cases [16, 17]. These results may cause variations due to variances in viral species in the

RNA sequences [7]. Moreover, in the real-time TMID technique, about 35.2% of 173

samples did not test positive initially, resulting in false-negative findings [17]. As a result,

patients with negative results should repeat the test to avoid misdiagnosis [13,18]. Though

the TMID technique has a significant risk of false-negative results, it can detect a small

percentage of other similar types of viruses, which may lead to the positive and reliable

identification of new infections amongst other viruses from viral genome sequences [13,19].

The overall unsatisfactory identification rate of TMID techniques leads to the search for an

alternative way to efficiently and accurately identify new infections amongst other viruses

from VGSs [7, 8]. Also, due to the sensitive nature of medical data, the TMID technique

of transferring the patient’s data to the central machine or server may create serious

privacy and security issues. Furthermore, TMID techniques require high computational

capabilities [11, 13, 19]. As a result, TMID techniques cannot be directly deployed for

lightweight medicare applications [11]. On the other hand, several machine learning (ML)

and deep learning (DL) models have been proposed to identify new infections to overcome

those issues [8]. However, most of the proposed ML and DL-based models did not consider

privacy and security issues related to the patient’s data [20,21]. Furthermore, most of the

previously proposed ML and DL-based models did not consider computational complexity

and dependability performance analysis [22,23].

In recent years, the progression of deep federated learning (DFL) and its remarkable suc-

cess in various domains has been guided as a potential solution in this field [20, 24–26].

Specifically, in the Industry 4.0 revolution, medicare applications require a high level

of dependable and privacy-preserving structure [23]. Therefore, there is a need for a

dependable and privacy-preserving identification model for new infections from VGSs.

Generally, dependability performance analysis includes availability, efficiency, and scala-

bility features [22, 23]. An identification model’s availability is determined by how often

it is available, and its efficiency is how well it performs with low computational complex-
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ity [23]. Also, scalability is the capability to adapt easily to the increased number of data

sources [22]. On the other hand, privacy-preserving techniques help to keep the data of pa-

tients safe and private [25]. Specifically, when any private information is disclosed against

a patient’s wishes, privacy becomes far more important because privacy-preserving is a

fundamental requirement for maintaining the positive reputation of any medicare or other

heterogeneous application [24].

1.4 Expected Contributions

Therefore, this article proposes a dependable and privacy-preserving DFL-based LeCun

Network (LeNet) identification model of new infections amongst other viruses from VGSs.

The proposed model has an overall accuracy of 99.12% after independently and identi-

cally distributing (IID) the dataset among 6 clients. Moreover, the proposed model also

increases other performance metrics for the same configuration, which is a noticeable im-

provement when compared to the other benchmark models. Finally, we have analyzed the

dependability performance to ensure the availability, efficiency, and scalability features of

our proposed model. The proposed dependable model, along with empirical results, is

encouraging enough to recognize as an alternative for the identification of new infections

amongst other viruses from VGSs by ensuring proper privacy and security of the patient’s

data. Figure 1.1 shows the motivation on how the proposed dependable model can be ap-

plied to identify the new infections amongst viruses from VGSs by ensuring proper privacy

and security of patients’ data.

The key contributions of this thesis are narrated as follows:

• In this work, we propose a dependable and privacy-preserving deep federated learning

-based LeCun Network (LeNet) identification model of new infections amongst other

viruses from viral genome sequences.

• The performance of the proposed model is evaluated using a real-time viral genome

sequence dataset with a different number of clients in terms of independent and
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Figure 1.2: The overall scenario of the proposed dependable identification model of new
infections from VGSs by ensuring proper privacy and security of patients’ data.

identically distributed (IID) distribution of the dataset.

• We consider various deep-transfer learning-based models to compare the performance

metrics with the proposed model.

• We also investigate the dependability performance and computational complexity of

the proposed model.

• Finally, overall performance evaluation is considered, where the proposed model

is more dependable, efficient, and outperforms the existing traditional centralized-

based models with ensuring proper privacy and security of patients’ data.

1.5 Reader Background

In this thesis, we assume that the readers have a working knowledge of both bioinformatics

and deep federated learning. We do not attempt to explain the basics of any of these

paradigms. As in much multi-disciplinary work, most readers will feel more comfortable

with this implementation procedure. We hope to convince them that much is to be gained

by integrating these two paradigms.
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It is not an easy to implement DFL with DNA sequences. Therefore, sometimes we will

need to refer to concepts that will only be fully explained in a later chapter. However, a

basic knowledge of both paradigms should be enough to get the reader through this thesis.

1.6 Summary

The intent of this chapter is to get you familiar with the foundations of the proposed

methodology before taking a deep dive into the main thesis pipelines. We have discussed

the overall scenario of the traditional molecular-based RT-qPCR techniques with limita-

tions in this chapter. The need for a privacy-preserving and dependable identification

model of new infections from genome sequences in todays world is introduced in the chap-

ter. Finally, the overall scenario of the proposed dependable identification model of new

infections from genome sequences by ensuring proper privacy and security of patients’ data

has been discussed in this chapter.

Next up, we explored the federated learning landscape, starting from the formal definition

to the various domains and fields associated with federated learning. Concepts relevant

to traditional machine learning, deep learning, and deep federated learning have also been

covered in the next chapter. Finally, an overview of recent research on the identification

of new infections in this domain has been discussed.

1.7 Organization of the Book

The remaining of this book is structured as follows:

Chapter 2 discusses the background and related works. While investigating most re-

cent relevant works, we find several works overlaps the similar motivation in different

ways. Therefore, this chapter illustrates the overview of federated learning, application of

federated learning, categories of federated learning, variations of federated learning, and

privacy-preservation techniques after investigating the related work in this domain.
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Chapter 3 describes the philosophy behind using federated learning to identify new

infections from genome sequences. It also elaborates on the key contributions of the pro-

posed model and discusses the overview of the proposed model by outlining the complete

workflow. Finally, it thoroughly explains the structure of the proposed model, followed by

the privacy-preserving module.

Chapter 4 continues with a discussion of environment setup, then an overview of the

dataset with data preparation process, and concludes with the training and testing process

of the selected deep transfer learning and deep federated learning models.

Chapter 5 discusses the overall performance of the selected models. We implemented a

wide range of analysis scenarios using various performance indicators and compared them.

We also analyzed the computational complexity and dependability of the models.

Chapter 6 summarizes the major contributions of this thesis. Also, discusses the pitfalls

and limitations which impacted the interpretation of the findings from our research and

presents a road-map for future development.

Appendix A shows the preprocessing steps of a DNA sequence dataset using the Python

programming language. We have also implemented the pre-processed dataset in traditional

machine learning to check the consistency of the dataset.

Appendix B contains a complete implementation procedure of all the deep transfer

learning models using the Python programming language.

Appendix C contains a complete implementation procedure of the proposed deep fed-

erated learning model with six client devices using the Python programming language.
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Chapter 2

Background and Related Work

While investigating the most recent relevant works, we find several works overlap the

similar motivation in different ways. The following sections investigate the related work in

this domain before illustrating the overview of federated learning, categories of federated

learning schemes, variations of federated learning, and privacy-preservation techniques.

2.1 Related Works

In this Section, we conduct an extensive review of state-of-the-art works in identifying new

infections from genome sequences. We analyze their strengths and weaknesses, focusing

on efficiency and privacy concerns. This section sets the foundation for our proposed

privacy-preserving model by identifying the gaps that need to be addressed.

2.1.1 TMID-based Schemes

First of all, to categorize genome sequences, alignment-based techniques such as the ba-

sic local alignment search tool (BLAST) and the burrows-wheeler aligner (BWA) have

been used, which depend on annotating the viral genes [27–29]. These alignment-based

approaches have been used only in identifying sequence similarities, which suffer from
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the necessity of needing base sequences for their detection [27, 30–32]. However, these

alignment-based techniques require more computational time and memory when they are

implemented to analyze thousands of genomes [33, 34]. As a result, ML-based algorithms

for the classification of DNA sequences have been proposed as an alternative. These tech-

niques have the advantage of not requiring pre-selected features in order to classify DNA

sequences. Using one-hot label encoding and ML-based algorithms, DNA sequences have

been efficiently identified and classified [35].

2.1.2 ML-based Schemes

Randhawa et al. [36] proposed an ML-based tool for DNA sequence comparison and anal-

ysis that does not require alignment. The tool was created to address issues related to

the alignment of DNA sequences. Zeng et al. [37] proposed an alignment-free CNN ar-

chitecture for predicting DNA protein binding. The performance of the proposed method

does not increase monotonically with the complexity. Zou et al. [38] also provided an

alignment-free DL-based technique for genome analysis, which succeeded in the fields of

regulatory genomics, variant calling, and pathogenicity score analysis. Furthermore, Seo

et al. [39] proposed DeepFam, which is also an alignment-free DL-based technique for pro-

tein prediction and modeling. DeepFam uses a feed-forward CNN model, which improves

accuracy and reduces run-time. Nguyen et al. [40] also proposed a DL model for classifying

DNA sequences. To represent sequences, they used one-hot vectors as input, which pre-

serves the essential position information of each nucleotide in the sequence. The proposed

model’s performance was evaluated using 12 DNA sequence datasets, and it achieved sig-

nificant improvements in all of these datasets. NCNet is a DL model introduced by Zhang

et al. [41] for predicting the function of non-coding DNA sequences. In finding regulatory

patterns of motifs, the NCNet model outperforms popular ML methods such as support

vector machines (SVM) and random forest (RF). Zhang et al. [42] proposed DeepSite, a

combination of bidirectional long-short-term memory (BiLSTM) and convolution neural

network (CNN) that was proposed to capture long-term dependencies between DNA se-

quence motifs. Zhou et al. [43] proposed a model called DeepSEA, which predicts the

chromatin effects of sequence modifications with single nucleotide sensitivity.
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Whata et al. [7] proposed an alignment-free DL-based model for new genome sequences.

The proposed CNN-BiLSTM model achieves better performance metrics. Furthermore,

LopezRincon et al. [8] also proposed a classification and a specific primer design for the

accurate detection of new infections using the DL technique. The suggested methodology

has a significant advantage over existing methods in that it can both automatically discover

new viral primer sets from a small quantity of data and give effective results in a short

amount of time. But, most of the above-mentioned ML and DL-based techniques did

not consider the privacy and security of patients’ sensitive data and the proposed model’s

dependability performance analysis with lower computational complexity.

2.1.3 DTL-based Schemes

A DTL paradigm for wearable healthcare systems was proposed by Chen et al. [21]. Ex-

periments show that the proposed technique outperforms traditional methods for wear-

able healthcare activity recognition, improving accuracy by 5.3%. Hinton et al. [44] and

Krizhevsky et al. [45] suggest that the DTL techniques have recently been shown to be

superior to the traditional ML and DL techniques, with the majority of applications focus-

ing on discovering patterns and developing those models to make predictions. Mehedi et

al. [46] proposed a DTL-based IDS system for electric vehicular networks. The proposed

method greatly improves accuracy over the mainstream ML, DL, and benchmark DTL

models and has demonstrated better performance. Mehedi et al. [23] also proposed a de-

pendable IDS system for IoT devices based on the DTL approach. Extensive analysis and

performance evaluation show that the proposed model is robust, more efficient, and has

demonstrated better performance, ensuring dependability, but they did not consider data

privacy and security. Furthermore, the DTL technique has also been used in topic cate-

gorization, medical systems, and spam detection [47–54]. But, most of the proposed DTL

models did not consider the privacy and security of data and dependability performance

analysis of the proposed models.

2.1.4 FL-based Schemes

Recently, Kumar et al. [55] proposed a blockchain-based FL structure for new infection

image classification. They considered the privacy and security of patient’s data, but they
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did not evaluate the proposed model’s dependability. Wu et al. [56] have also proposed

a personalized FL technique in the healthcare paradigm based on the cloud edge. The

accuracy of the proposed model is high, and they also consider the privacy and security of

patient data but not the dependability of the model. Moreover, Roth et al. [57] proposed

a breast density classification model based on the FL technique. The proposed model

partially takes into account dependability analysis as well as the privacy and security

of patient data. Finally, Qayyum et al. [25] proposed a collaborative FL technique for

new infection diagnosis at the edge. The accuracy of the proposed model is very high in

comparison with the previously proposed model. They considered the privacy and security

of the patient’s data but not the dependability analysis of the proposed model.

2.1.5 Overview of the Schemes

The existing identification and classification models have been categorized according to the

algorithm, accuracy, dependency, identification coverage, privacy and security of patient

data, and dependability analysis of the proposed model. In summary, in the real-time

TMID technique, about 35.2% of 173 samples did not test positive initially, resulting in

false-negative findings. As a result, patients with negative results should repeat the test

to avoid misdiagnosis. Also, due to the sensitive nature of the patients data, the TMID

technique of transferring data to the central machine or server may create serious privacy

and security issues. Furthermore, the TMID technique requires high computational capa-

bilities. As a result, these techniques cannot be directly deployed for lightweight Medicare

applications. Moreover, several ML and DL models have been proposed. But, most of the

models did not consider privacy and security issues related to the patients data [4]. Also,

they did not consider the dependability performance analysis of the proposed models. A

summary of all the existing mechanisms is given in Table 2.1. Since the success of the FL

technique in different fields has been recognized by researchers, this technique has now

been incorporated into the bioinformatics area to increase the performance of prediction or

classification tasks. Therefore, in this paper, we propose a privacy-preserving DFL model,

which is an alignment-free method to improve the accuracy of new infection detection

rates with dependability analysis from other virus strains.
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Table 2.1: An overview of the recent research on different medicare applications.

Algorithms Accu-
racy

Depend-
ency Coverage

Privacy
and

Security

Depend-
ability

MLDSP [36] 92.0% Alignment
free

DNA sequence
comparison 7 7

CNN [37] N/A Alignment
free

Predicting
DNA-protein

binding
7 7

DL [38] N/A Alignment
free

Discover DNA
binding motifs 7 7

DeepFam [39] N/A Alignment
based

Protein family
modeling and

prediction
7 7

CNN [40] 96.23% Alignment
based

DNA sequence
classification 7 3

NCNet [41] N/A Alignment
free

Predicting function
of non-coding
DNA sequence

7 7

DeepSite [42] N/A Alignment
free

Predicting DNA
protein binding 7 7

DeepSEA [43] 95.80% N/A
Predicting effects

of non-coding
variants

7 7

DL [7] 98.70% N/A
New genome

sequences
classification

7 3

DL [8] 98.73% Alignment
free

Classification of
new infection 7 3

BFL [55] 98.68% N/A
New Infection

image
classification

3 7

PFL [56] 95.37% N/A
Healthcare
based on

the cloud edge
3 7

FL [57] N/A % N/A Breast density
classification 3 7

CFL [25] 99.05 % N/A
New Infection

diagnosis
at the edge

3 7

DFL [Proposed]
* [23,46,53] 99.12% Alignment

free
Identification of
new infection 3 3

* Indicate the published research article using various data sets.
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2.2 Federated Learning

Training a model at each local device where data is stored, and then each device exchanges

their models’ parameters in order to converge on a single global model, where no device is

able to snoop on the private data of any other device because of the encryption engineering

of the communication mechanism [26, 58]. This is the concept called "Federated Machine

Learning (FML)," sometimes referred to simply as "Federated Learning (FL)" [58].

In other words, FL is a distributed machine learning (ML) framework, where multiple

devices collaborate to solve traditional distributed ML problems under the coordination

of the central server without sharing their local private data with other devices [26,59].

2.2.1 Application of Federated Learning

Federated Learning (FL) has various applications across different domains and industries.

Here are some examples of how federated learning can be applied:

• Healthcare: FL enables collaborative model training on distributed healthcare data

while maintaining patient privacy. It can be used for tasks such as disease diagnosis,

personalized treatment recommendation, predictive analytics, and drug discovery,

by leveraging data from multiple hospitals or healthcare institutions.

• Internet of Things: FL can be applied to IoT devices, allowing them to collabora-

tively learn and improve their models without sending raw data to a central server.

This is beneficial for applications like smart homes, smart cities, and industrial IoT,

where privacy and low-latency communication are crucial.

• Financial Services: FL can be employed in the financial industry to analyze cus-

tomer behavior, detect fraudulent activities, and improve risk assessment models.

Banks and financial institutions can collaborate while ensuring the privacy and se-

curity of sensitive financial data.

• Mobile Applications: FL enables on-device model training for mobile applica-

tions. Instead of sending user data to a central server, the models are trained locally
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on user devices, providing personalized experiences while maintaining data privacy.

This can be used for tasks like predictive text input, voice recognition, and person-

alized recommendations.

• Autonomous Vehicles: FL allows autonomous vehicles to learn collectively from

their individual experiences. Models can be trained on vehicle-specific data without

compromising user privacy, and the knowledge gained can be shared across the fleet,

improving safety, performance, and efficiency.

• Federated Analytics: FL can be applied to aggregate and analyze data from

multiple sources, such as social media platforms or online marketplaces. This enables

insights generation while preserving user privacy and data ownership.

• Edge Computing: FL can be combined with edge computing to train models on

edge devices or edge servers. This reduces the need for transferring large amounts of

data to a centralized server, enabling faster and more efficient model training while

addressing latency and bandwidth limitations.

• Natural Language Processing: FL can be used for collaborative NLP tasks, such

as language translation, sentiment analysis, and speech recognition. Models can be

trained using data from multiple sources to improve accuracy and performance.

The flexibility and privacy-preserving nature of FL make it a promising approach for

collaborative machine learning across various domains, allowing organizations to leverage

collective intelligence while protecting data privacy and security.

2.2.2 Federated Learning as a Solution

The Google developer team recommends the FL model to protect the privacy and security

of the user’s data, which solves the problem of using a central server or device to train a

shared global model [20,58,60,61]. At first, they deployed the FL model to train the ML

model based on globally dispersed mobile devices while keeping user data secure [58, 61].

Because of the continuous increase in the number of medical devices in recent years, a

large amount of data is generated, and because of its ever-increasing extensive computing
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and processing capabilities, as well as the privacy and security issues, it is recommended

to store data locally and perform the computation mechanism on the local devices with

edge computing technology [56,58,62]. As the storage and processing capabilities of local

devices improve over time, local devices can be used more efficiently [63].

Therefore, to implement this mechanism, there is a need for the FL setting, which makes

it possible to directly investigate the local or remote devices [20]. This mechanism is

completely different from the typical ML setting, which is used in large-scale artificial

intelligence technology, medical technology, internet of things technology, and so on for

data privacy and security purposes [64–67]. According to recent studies, the majority of

large-scale service providers have already incorporated FL technology [58, 61, 62, 64–67].

Some medical devices and non-medical devices are equipped with a large number of sensors

that allow them to acquire, aggregate, respond, and adapt to new sensitive medical data

in a real-time environment [68,69].

For example, in order to accurately predict the risk of cardiovascular disease, medical

devices need the most up-to-date models with a wide range of pathological data in order

to operate safely and make predictions in real-time [7,26]. However, privacy and security

concerns over highly sensitive medical data and the limited connectivity of devices make

it difficult to build aggregate models in such situations [26]. Also, genome sequence data

is more sensitive, so privacy and security of patient data must be ensured to analyze that

data [7, 70]. As a result, FL technology is used to train models in this context, allowing

them to adapt quickly to changes while maintaining users’ privacy and security [65–67].

A large number of patients’ confidential data must be kept on the local device at all

times in order to strictly medical laws and regulations (e.g., GDPR sets standards for all

sensitive personal data, and HIPAA deals with only protected health information) [71,72].

In this case, the FL mechanism is more suitable for healthcare applications in the context

of medical organizations, which often store significant volumes of patients’ confidential

data [26, 67, 72]. This FL also enables private and secure collaborative learning between

other organizations, where privacy and security of patients’ data are the main concerns.
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2.2.3 Structure of Federated Learning

Figure 2.1 shows the overall architecture and the secure communication procedure between

local devices and the central server in a typical FL mechanism training process. In this

case, the local devices and the central aggregation server are located at the medical service

access point. There are a number of stages involved in the typical FL communication

process between local devices and the central aggregation server [62,73,74].

Figure 2.1: The overall architecture and the secure communication procedure between
local devices and a central server in a typical FL mechanism training process.

During the system initialization and device selection phases, the central aggregator server

chooses specific tasks and sets different learning parameters [62]. These different learning

parameters include the number of communication rounds, batch size, loss function, learn-

ing rates required to achieve an optimized single global model, etc. After the initial setup

is complete, the central aggregation server builds a new model and distributes it to all

local devices or clients in order to begin distributed training [24]. Then, the local model

is trained using the client’s or device’s own private data, and the update is calculated by

minimizing the loss function [71]. Finally, a new global model is created by compiling

all model modifications from local devices and resolving the optimization issue on the

server [58,62].
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2.3 Categories of Federated Learning

There are two main categories in the FL mechanism, the first one is the dataset partition

FL mechanism, and the last one is the network-structured FL mechanism [26].

2.3.1 Dataset Partition FL Mechanism

The dataset partition FL mechanism can be further divided into three different categories

based on the distribution of training data in the sample and feature space [26, 75]. They

are the horizontal federated learning (HFL) mechanism, vertical federated learning (VFL)

mechanism, and transfer federated learning (TFL) mechanism.

2.3.1.1 Horizontal Federated Learning

Figure 2.2 shows the HFL mechanism, where all local client devices train the same single

global model using the local private dataset from the local client device, which has the same

feature space but different sample spaces [26, 75, 76]. However, because of the common

feature space, local client devices can train their local models using the same model [26].

Then, each local client device uses the local private dataset to train in order to calculate

local updates that can be encrypted through an encryption technique [26]. Then, the

central aggregation server collects all local updates from all client devices [26, 75, 76]. In

addition, until the goal accuracy is met, the central aggregation server calculates the

subsequent global update without accessing the local private dataset and then sends the

global update back to the local client devices for the subsequent round of local training [77].

2.3.1.2 Vertical Federated Learning

In the VFL mechanism, it solves the problem of training models across local client device

networks on the same sample set with different feature sets [26,75,76]. Furthermore, local

private data samples are used to train a shared model, which uses a variety of encryption
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Figure 2.2: The horizontal federated learning (HFL) mechanism is based on the dataset
samples and features partition.

mechanisms in communication between local devices and a central server to enhance the

privacy and security of patients’ sensitive data [77]. Figure 2.3 shows the VFL mechanism.

2.3.1.3 Transfer Federated Learning

The TFL mechanism, a VFL extension, allows models to interact with different sample

spaces and different feature spaces while participating in the learning process [76, 78].

Furthermore, to protect privacy and provide security of patients’ sensitive data while

learning the model in this environment, secure encryption mechanisms must be deployed

[26]. Figure 2.4 shows the TFL mechanism.

2.3.2 Network Structured FL Mechanism

The network structured FL mechanism can be further divided into three categories based

on the structure of the network topology [26, 75–77]. The first one is the centralized
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Figure 2.3: The vertical federated learning (VFL) mechanism is based on the dataset
samples and features partition.

federated learning (CFL) mechanism, the second one is the decentralized federated learn-

ing (DFL) mechanism, and the last one is the heterogeneous federated learning (HFL)

mechanism.

2.3.2.1 Centralized Federated Learning

Figure 2.5 shows the CFL mechanism, where a central server is used to control and manage

the different steps of the mechanism and coordinate all the client devices during the

learning phase [26, 58]. Each client device uses its own local private dataset to train the

model [26]. After training the local model parameters, the central server aggregates the

trained parameters using a weighted average approach from each client device. As a result,

each client device will have a single global model at the end of the training process [76].

The central server is responsible for the client device selection at the beginning of the

training phase and for the aggregation of the received model updates [61]. Since all the

selected client devices have to send updates to a single global model and to protect the
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Figure 2.4: The transfer federated learning (TFL) mechanism is based on the dataset
samples and features partition.

privacy and security of training data, the central server may become a key element of the

mechanism [75–77].

2.3.2.2 Decentralized Federated Learning

The DFL technique uses a decentralized network architecture [26, 58]. Figure 2.6 shows

the DFL technique’s overview diagram, where each client device uses its own private

dataset for local model training during each communication round, and all client devices

are connected to one another as in a peer-to-peer (P2P) network architecture [78, 79]. In

this technique, each client device aggregates model updates that are received from nearby

client devices via P2P communication to create a single global model. This configuration

makes the DFL technique more scalable than the CFL technique [21]. In addition, the

DFL technique can further expand its capabilities through P2P-based blockchain (BC)

technology, where model updates will be uploaded to the BC ledger for secure model

aggregation and distribution mechanism [78–81].
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2.3.2.3 Heterogeneous Federated Learning

An increasing number of application domains involve a large set of heterogeneous clients,

e.g., mobile phones, medical devices, and industrial IoT devices [81]. The heterogeneous

FL (HeteroFL) technique is the most efficient in terms of computation complexity and

secure communication protocol for these heterogeneous clients. At present, the majority of

existing FL techniques share the same single global model with the local client devices with

independent and identically distributed (IID) data configuration [59, 81]. But HeteroFL,

a new FL technique, was recently developed to handle these heterogeneous local client

devices with a secure communication protocol and different computation capabilities of

both IID and non-IID data configuration [59].
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2.4 Federated Learning Variations

There are many types of variations in the FL setting. Some of the variations are federated

stochastic gradient descent (FedSGD), federated averaging (FedAvg), FL with dynamic

regularization (FedDyn), and personalized FL by pruning (Sub-FedAvg). Also, some of

the variations are in the development phase by various large organizations [82].

2.4.1 Federated Stochastic Gradient Descent (FedSGD)

The majority of SGD variations are used in the deep learning model training phase to

generate gradients on a randomly chosen portion of the whole dataset and utilize those

results to complete a gradient descent step [82,83]. The FedSGD technique is the straight-

forward transposition of the SGD technique to the FL setting, which uses all the data of

client [82]. Finally, the gradients are averaged by the central server in proportion to the

number of training samples on each client and used to create a gradient descent step.
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2.4.2 Federated Averaging (FedAvg)

The FedAvg technique is a generalization of the FedSGD technique that enables local

clients to execute several batch updates on local data and share the updated weights rather

than the gradients. This generalization technique is justified by the fact that when all local

clients begin with the same initialization, averaging the gradients is strictly equivalent to

averaging the weights themselves [26]. Additionally, the performance of the final averaged

model is not always negatively impacted by averaging weights from the same initialization.

The implementation process of the FedAvg is simple and easy.

2.4.3 FL with Dynamic Regularization (FedDyn)

The FL techniques suffer when the local client device datasets are heterogeneously dis-

tributed. The fundamental problem with heterogeneously distributed device settings is

that decreasing device loss functions does not equate to minimizing the central model

loss. Recently, the FedDyn technique has been proposed as a solution to the heteroge-

neous dataset setting [84]. In order to adjust the central global device loss, the FedDyn

technique dynamically regularizes each client device’s loss. Also, the benchmark for com-

parison in the FL technique is reducing the number of communications rounds. The

FedDynOneGD technique is a FedDyn technique extension with fewer local computation

round requirements [83, 84]. So, the FedDynOneGD technique only creates one gradient

for each device in each round and uses a regularized gradient to update the central model.

2.4.4 Personalized FL by Pruning (Sub-FedAvg)

The FL techniques cannot achieve good central global performance under the Non-IID

configuration of the dataset, which motivates the participating client devices to yield

personalized models in the federation. Recently, in Sub-FedAvg, a new personalized FL

technique was proposed in which hybrid pruning of sub-networks handles the secure com-

munication efficiency, resource constraints, and final model accuracy [58].
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2.5 Security Studies of Federated Learning

The FL has emerged as a promising paradigm for collaborative machine learning, en-

abling multiple parties to jointly train models without sharing their raw data. While FL

offers numerous advantages, it also introduces unique security challenges that need to be

addressed.

2.5.1 Threat Models and Adversarial Scenarios

Understanding the potential threats and adversarial scenarios is crucial for designing ro-

bust security mechanisms in federated learning. Researchers have identified various threat

models, including Byzantine attacks, model poisoning, and inference attacks, which can

compromise the integrity and privacy of FL systems [58]. Studying these threat models

helps in developing countermeasures and mitigation strategies.

2.5.2 Secure Aggregation Protocols

Secure aggregation is a critical component in FL, enabling participants to securely combine

their locally computed model updates without exposing sensitive information [26]. Several

cryptographic protocols, such as secure multi-party computation (MPC), homomorphic

encryption, and differential privacy, have been investigated to achieve secure aggregation

while preserving data privacy [26,58].

2.5.3 Privacy-Preserving Techniques

Preserving data privacy is a paramount concern in FL. Various techniques, such as fed-

erated learning with differential privacy (FL-DP), secure aggregation, and cryptographic

protocols, have been explored to ensure that sensitive information remains protected dur-

ing the training process [59–61]. Understanding the trade-offs and limitations of these

techniques helps researchers design privacy-preserving FL algorithms that strike a balance

between utility and privacy.
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2.5.4 Robustness Against Attacks

FL systems need to be robust against adversarial attacks that aim to compromise the

integrity or quality of the trained models [76]. Studies have investigated the vulnerability

of FL models to poisoning attacks, backdoor attacks, and model extraction attacks [53,

71]. Analyzing these attack vectors aids in the development of robust defenses, including

anomaly detection mechanisms, robust optimization algorithms, and data sanitization

techniques [23,55].

2.5.5 Secure Model Updates and Parameter Exchange

The exchange of model updates and parameters in FL introduces potential security risks

[62, 80]. Research has focused on secure and efficient methods for transmitting model

updates, leveraging cryptographic techniques, such as secure channel protocols and secure

enclaves, to protect the confidentiality and integrity of the exchanged data [62].

2.6 Summary

This chapter explored the federated learning concept, starting from the formal definition

to the various domains and fields associated with federated learning. In this chapter,

we also surveyed work related to our own, both to point out the many contributions of

previous researchers and to place our contributions in the proper context. Furthermore,

the performance of traditional machine learning over deep learning has been well-studied,

whereas most of the previous methods did not consider dependability performance analysis

and users’ privacy and security. Finally, an overview of recent research on the identification

of new infections in this domain has been discussed in this chapter.

In the following chapters, we develop a privacy-preserving model that can enhance the

efficiency of identifying new infections from genome sequences. This model can diminish

the challenges of state-of-the-art works by providing a more secure and efficient way to

share and analyze genome data.
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Chapter 3

Proposed Methodology

In this chapter, we discuss the philosophy behind using federated learning to identify new

infections from genome sequences. We then elaborate on the key contributions of our

proposed model. We also discuss the overview of our proposed model by outlining the

complete workflow. Finally, we thoroughly explain the details structure of our proposed

model, followed by the privacy-preserving module.

3.1 Introduction

Federated learning is a machine learning technique that allows multiple parties to train a

shared model without sharing their data. This is done by having each party train a local

model on their own data and then sending updates to a central server. The central server

then aggregates the updates and updates the shared model. This process is repeated until

the model converges. Federated learning has several advantages over traditional machine

learning techniques. First, it allows for the training of models on sensitive data without

the need to share the data. This is important for protecting privacy and security. Second,

federated learning can be used to train models on data that is distributed across multiple

parties. This can be useful for training models on large datasets or for training models on

data that is difficult to share.
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The philosophy behind using a federated learning-based identification model for new infec-

tion from genome sequences encompasses several key principles and objectives. Federated

learning is an approach that allows collaborative model training across multiple decen-

tralized data sources, while preserving data privacy and security. When applied to the

identification of new infections from genome sequences, this philosophy aims to achieve

the following:

1. Privacy Protection: Genome sequences contain sensitive and personal informa-

tion. By utilizing a federated learning approach, the privacy of individual genome

data can be safeguarded. Instead of centralizing the data, the model is trained lo-

cally on each data source, ensuring that sensitive genetic information remains secure

within its respective source.

2. Data Diversity and Scalability: The federated learning framework allows the

aggregation of diverse genome sequences from multiple locations or institutions. By

leveraging the collective knowledge and genetic diversity from different sources, the

model can be trained on a larger and more representative dataset, enhancing its

ability to identify new infections accurately. This approach also enables scalability as

new data sources can be seamlessly incorporated into the federated learning system.

3. Real-Time Adaptability: The identification of new infections requires continuous

monitoring and analysis of genome sequences. A federated learning-based model can

be updated and refined in real-time as new data becomes available. This adaptability

allows the model to stay up-to-date with emerging infections, rapidly incorporating

new information and improving its accuracy over time.

4. Collaboration and Knowledge Sharing: Federated learning promotes collab-

oration among different institutions, researchers, and experts. By sharing model

updates, insights, and expertise while preserving data privacy, collective efforts can

be harnessed to enhance the accuracy and effectiveness of the identification model.

This philosophy encourages a cooperative approach in addressing the challenges

posed by new infections, fostering a broader understanding and collaborative re-

sponse to emerging threats.
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5. Ethical Considerations: The philosophy of using a federated learning-based iden-

tification model aligns with ethical principles by respecting the privacy and autonomy

of individuals. It ensures that data is used in a responsible and secure manner, re-

ducing the risk of unauthorized access or misuse. By prioritizing privacy and ethical

considerations, this approach fosters trust and promotes responsible use of genomics

data for the benefit of public health.

In summary, the philosophy behind using a federated learning-based identification model

for new infection from genome sequences revolves around privacy protection, data diversity,

scalability, real-time adaptability, collaboration, and ethical considerations. By combin-

ing the power of decentralized data sources, advanced machine learning techniques, and

collaborative efforts, this philosophy aims to enhance the accuracy, privacy, and efficacy

of identifying new infections, ultimately contributing to the broader understanding and

management of emerging health threats.

3.1.1 Expected Contributions

Therefore, this article proposes a dependable and privacy-preserving DFL-based LeCun

Network (LeNet) identification model of new infections amongst other viruses from VGSs.

The proposed model has an overall accuracy of 99.12% after independently and identi-

cally distributing (IID) the dataset among 6 clients. Moreover, the proposed model also

increases other performance metrics for the same configuration, which is a noticeable im-

provement when compared to the other benchmark models. Finally, we have analyzed the

dependability performance to ensure the availability, efficiency, and scalability features of

our proposed model. The proposed dependable model, along with empirical results, is

encouraging enough to recognize as an alternative for the identification of new infections

from VGSs by ensuring proper privacy and security of the patient’s data.

The key contributions of this thesis are narrated as follows:

• In this work, we propose a dependable and privacy-preserving deep federated learning

-based LeCun Network (LeNet) identification model of new infections amongst other
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viruses from viral genome sequences.

• The performance of the proposed model is evaluated using a real-time viral genome

sequence dataset with a different number of clients in terms of independent and

identically distributed (IID) distribution of the dataset.

• We consider various deep-transfer learning-based models to compare the performance

metrics with the proposed model.

• We also investigate the dependability performance and computational complexity of

the proposed model.

• Finally, overall performance evaluation is considered, where the proposed model

is more dependable, efficient, and outperforms the existing traditional centralized-

based models with ensuring proper privacy and security of patients’ data.

The following sections, we elaborate the proposed dependable and privacy-preserving DFL-

based identification model first. Then we explain the proposed model by outlining the

complete workflow, and finally we thoroughly explain the details structure of the proposed

model, followed by the privacy-preserving module.

3.2 Proposed DFL-based Identification Model

Figure 3.1 shows the proposed DFL-based identification model. In this case, the local

devices and the central aggregation server are located at the medical service access point.

There are a number of stages involved in the proposed DFL communication process be-

tween local devices and the central aggregation server.

During the system initialization and device selection phases, the central aggregator server

chooses specific tasks and sets different learning parameters. These different learning pa-

rameters include the number of communication rounds, batch size, loss function, learning

rates required to achieve an optimized single global model, etc. After the initial setup

is complete, the central aggregation server builds a new model and distributes it to all
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Figure 3.1: The overall architecture of the proposed DFL-based identification model.

local devices or clients in order to begin distributed training. Then, the local model is

trained using the client’s or device’s own private data, and the update is calculated by

minimizing the loss function. Finally, a new global model is created by compiling all model

modifications from local devices and resolving the optimization issue on the server.

3.3 Workflow of the Proposed Model

The idea of the proposed model is to develop a dependable and privacy-preserving DFL

model. The complete workflow of the proposed model includes model initialization, local

model training by medical clients, model parameter encryption by medical clients, model

parameter aggregation by the cloud server, and local model update by medical clients.

Figure 3.2 shows the overall workflow of the proposed DFL model with two clients and a

key management authority.
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Figure 3.2: The overall workflow of the proposed DFL model with two clients and a key
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3.3.1 Model Initialization

First, a certified trusted authority Ta generates the public key PuK and private key PrK

pair using the key generation method GeK(k), where k is the security parameter. Then, Ta

established a secure communication channel between the cloud server S and each medical

client C. Once a secure channel of communication has been established, S initializes the

learning rate of the model η, the rate of exponential decay of moment estimator m1, m2

where 0 ≤ m1, m2 < 1, numerical stabilization γ, loss function of the model l, and batch

size β. Then, S selects an array and set its initial parameters to W 0. Furthermore,

each medical client Ck reports a size Nk of its personal data resource Dk to the S, where

k ∈ K = {1, 2, 3, 4, ..., K}, and then, S computes each Ck contribution ratio by calculating

αk = Nk/(N1 + N2 + N3 + ...... + NK);. Finally, set the index of the first communication

round r to 1 between S and C.

3.3.2 Local Model Training by Medical Clients

Algorithm 1 shows the details procedure of the proposed model. Each Ck trains a DL-

based model locally, using its own private data resource Dk after receiving initial model

parameters w0 as well as η, m1, m2, γ, l, β, W r−1, C, Dk from S. The training procedure of

the local DL models continues until the loss function l converges. First, initialize the first

moment variable m1 and the second moment variable m2 by 0. Then, split Dk into batches

with equal size β and set the initial local model parameters by W r
k ← W̄ r−1. Furthermore,

for each batch of data resource compute the gradient g, biased first and second moment

estimate n1, n2, respectively. Also, compute bias-corrected first moment estimate n̄1,

second moment estimate n̄2, and the bias-corrected learning rate η. Finally, update the

local DL model parameter W r
k and return the model parameters. Algorithm 2 summarizes

the details of the training procedure of the local model. The training procedure of the

local DL model is performed offline. So, there is no need to be concerned about the local

model’s computational complexity.
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Algorithm 1: Privacy-Preserving DFL Model
Input : Security parameter: k, Medical clients set: C, Data resources of all medical

clients: {Dk|k ∈ K}, Number of communication rounds: R

Output: Efficient deep federated learning model

Initialization:

Ta generates the key pair by {PuK, PrK} = GeK(k); S initializes η, m1, m2, γ, l, β; S

set initial model parameters as W 0; Ck reports a size Nk to the S, where k ∈ K; S

computes each contribution ratio by αk = Nk/(N1 + N2 + .... + NK); S set the index

of first communication round r to 1;

Procedure:

1 for r ≤ R do

2 (a) Medical clients (Upload):

3 for ∀k ∈ K do

4 Ck calculates the rth round model parameters W r
k as per local DL model

training with inputs: η, m1, m2, γ, l, β, W r−1, C, Dk;

5 for ∀i ∈ δ do

6 EP (wr
k,i) = PE(wr

k,i, PuK);

7 Ck uploads EP (wr
k,i)|i ∈ δ to S;

(b) Cloud server:

8 for ∀i ∈ δ do

9 AP = PA(wr
1,i, wr

2,i, ..., wr
K,i, α1, α2, ..., αK);

10 S distributes AP |i ∈ δ to all Ck(k ∈ K);

(c) Medical clients (Update):

11 for ∀k ∈ K do

12 for ∀i ∈ δ do

13 DP (w̄r
k,i) = PD(AP , P rK);

14 Ck updates local model by DP (w̄r
k,i)|i ∈ δ;

15 r ← r + 1;

16 return Efficient DFL model with parameters W R.

36



3.3.2 Local Model Training by Medical Clients

Algorithm 2: Training of the Local DL Model
Input : Learning rate of the model η

Numerical stabilization γ

Loss function of the model l

Batch size β

Security parameter: k

Medical clients set: C

Data resources of all medical clients: {Dk|k ∈ K}

Moment estimator m1, m2, where 0 ≤ m1, m2 < 1

Output: Model parameters W r
k

Initialization:

→ Initialize momentum terms n1 = 0 and n2 = 0;

→ Split Dk into batches with equal size β;

→ Set initial local model parameters by W r
k ← W̄ r−1;

Procedure:

1 repeat

2 for each batch of data resource do

3 Compute gradient: g ← ∆W r
k .l;

4 Compute and update biased 1st moment estimate:

n1 ← m1.n1 + (1−m1).g;

5 Compute and update biased 2nd moment estimate:

n2 ← m2.n2 + (1−m2).g2;

6 Compute bias-corrected 1st moment estimate: n̄1 ← n1/(1−me
1);

7 Compute bias-corrected 2nd moment estimate: n̄2 ← n2/(1−me
2);

8 Compute bias-corrected learning rate: η ← η.
√

(1−m2)/(1−m1);

9 Update local model parameters: W r
k ←W r

k − η.n̄1/(
√

n̄2 + γ)

until Loss function l converges;

10 return Model parameters W r
k .
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3.3.3 Encryption of Model Parameters by Medical Clients

When the local DL model is trained and finally return the model parameters W r
k , then each

Ck encrypts W r
k using the method PE(wr

k,i, PuK), where W r
k = (wr

k,1, wr
k,2, wr

k,3, ...., wr
K,i)

and i ∈ δ = (1, 2, 3, ...., δ). Then, the encrypted parameters EP (wr
k,i)|i ∈ δ of the local DL

model are uploaded to the S by each Ck, where δ is the total number of parameters.

3.3.4 Aggregation of Model Parameters by Cloud Server

Cloud server S computes each Ck contribution ratio by calculating αk = Nk/(N1 +

N2 + N3 + ...... + NK). Then, the contribution ratios αk and encrypted parameters

EP (wr
k,i)|i ∈ δ from all Ck are aggregated by S, where aggregated parameters AP =

PA(wr
1,i, wr

2,i, wr
3,i, ....., wr

K,i, α1, α2, α3, ....., αK). Finally, S sent back the aggregated pa-

rameters AP |i ∈ δ to all Ck(k ∈ K) by the secured communication channel.

3.3.5 Local Model Updating by Medical Clients

The encrypted aggregated parameters AP |i ∈ δ are decrypted by using the method

PD(AP , P rK). Then, Ck updates the local DL model by the decrypted parameters

DP (w̄r
k,i)|i ∈ δ. After the completion of each successful update operation, the index value

of r increases one by one, where r = (1, 2, 3, 4, ....., R). Finally, an efficient DL-based model

has been obtained after R ((an empirically determined threshold) rounds of interactions

between S and Ck.

3.4 Overall Computational Complexity of the Model

For each successful communication round, each Ck needs to conduct parameter encryp-

tion method PE and parameter decryption method DP . So, total requires τ number of

exponentiation operations in Z∗
n2 and a line of multiplication operations in Z∗

n2 for each

successful communication round. Here, Z∗
n2 is treated as a multiplicative group, where Zn2
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Figure 3.3: The internal computational complexity structure of the local model for each
step.

is the set of integers (0, 1, 2, 3, ....., n−1) with arithmetic being done modulo n2. Figure 3.3

shows the internal computational complexity structure of the local model for each step.

As a result, the computational complexity of each Ck is approximately linearly propor-

tional to δ (Ck ∝∼ δ) in a local DL model. Furthermore, S must perform K times of

multiplication operations in Z∗
n2 when Ck aggregates all model parameters and contribu-

tion rations for each successful communication round.

3.5 Proposed DFL Model

In this section, we first discuss the proposed dependable and privacy-preserving DFL

model’s architecture, and then we thoroughly explain the local model training procedure.

3.5.1 Model Overall Architecture

The block diagram of the proposed model is shown in Figure 3.4, which contains two parts:

the local part and the cloud server part. The local part can be further divided into two

parts. The first one is the local model training part, and the last one is the local model

validation part.

After preprocessing the raw DNA sequence data, we split the whole dataset into multiple

datasets and applied it to the local model for training. The most important parameters for
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Figure 3.4: The block diagram of the proposed model with a local client device and a
cloud server.

the selected model were determined through subsequent empirical experiments. We used

a randomly selected training dataset to train the local model and a randomly selected

validation dataset to validate the final model. If the local model loss is not minimal,

the local model parameters have been back-propagated to the cloud server. Then, the

cloud server collects and averages each of the local model parameters. After averaging

the parameters, the cloud server distributes the updated parameters to all local client

models. The procedure continues until the loss is reduced to a minimum. Thus, the final

model has been selected based on its best performance metrics. We have also analyzed the

dependability performance of the proposed model. Table 3.1 shows the hyper-parameters

of the local model.

3.5.1.1 Internal Structure of the Local Model

The internal structure and the working mechanism of each layer of the client device’s local

model have been discussed in this section.
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3.5.1 Model Overall Architecture

Table 3.1: The hyperparameters of the local model

Hyper-parameters Value/Function
Number of Hidden Layers 2
Units in hidden layers 32, 64
Batch size 64
Epochs 200
Hidden layer activation function ReLu
Output layer activation function Softmax
Dropout 0.1
Optimizer Adam
Learning Rate 0.001
Loss function Categorical Crossentropy

3.5.1.2 Input Layer

The internal structure of the local model is shown in Figure 3.5. There are eight layers

in the local model, including the input layer. The first layer is the input layer. The input

of the network is the same shape for all clients, which brings the initial pre-processed

encoded DNA sequence data into the model for further processing by subsequent layers.

Input
Layer

Convolution
Layer

Pooling
Layer

Convolution
Layer

Pooling
Layer Flatten

Layer
Dense
(ReLu)

Dense
(Softmax)

Figure 3.5: The internal structure of the local model including input and output layer.
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3.5.1.3 Convolution Layer

The second layer of our model is the convolution layer, which is directly connected to

the input layer. This layer is a trainable layer that converts the encoded DNA sequence

into a vector of features [85]. Convolution is operated by windowing each convolution

unit over the encoded DNA sequence [47]. Figure 3.6 shows the working procedure of the

convolution layer of the local model.

1.00 0.75 0.50 1.00 0.25

0.50 0.25 1.00 0.50 0.25

0.25 0.75 0.50 1.00 1.00
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Input Encoded DNA Sequence

1 0 1

0 1 0

1 0 1

Kernel (3x3)

2.5 3.5

Stride: 1 and Padding: 0

Convoluted Features

Figure 3.6: The working procedure of the convolution layer of the local model.

3.5.1.4 Max Pooling Layer

The third layer is the polling layer, which is a non-trainable layer to change the size of the

feature map [85]. There are different pooling techniques, such as maximum pooling and

average pooling. We used a total of two max pooling layers after the convolution layer,

which selects the maximum activated value among neurons. Figure 3.7 shows the working

procedure of the max pooling layer of the local model.

3.5.1.5 Dropout Layer

The dropout layer randomly removes some neurons or connections at training time between

consecutive layers based on a predefined dropout ratio [23]. To avoid overfitting and train
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Figure 3.7: The working procedure of the max pooling layer of the local model.

robust features, we added a dropout layer with a (10/100) or 0.10 ratio after the second

max pooling layer [86]. The mechanism of the dropout layer is shown in Figure 3.8.

Figure 3.8: The working procedure of dropout layer of the local model. (a) Standard
neural network and (b) Network after dropout.

3.5.1.6 Flatten Layer

In order to feed the data into the following layer, it must be flattened or transformed into

a one-dimensional array. In this layer, the output of the preceding layers is flattened into

a single lengthy feature vector [23]. Figure 3.9 shows the mechanism of the flattened layer.
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3.5.1.7 Dense Layer

A dense layer is used to classify infections based on output from previous layers. This

layer is deeply connected with its preceding layer. To combine features from a sequence

and to extract high-order features, we employ this hidden layer [7]. The ReLU activation

function is used in this layer. Figure 3.9 also shows the working procedure of the ReLU

activation function.
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Figure 3.9: The working procedure of the flattened and dense layer of the local model.

3.5.1.8 Softmax Layer

The last layer of our model is the softmax layer, which is connected to a dense layer. This

layer is used to calculate the probability of each class or label, whether it is a new infection

or not [7]. The mechanism of this layer is shown in Figure 3.10.

3.6 Cryptosystem-Based Secure Communication Protocol

In this section, we discussed the cryptosystem-based secure communication protocol, in-

cluding key generation, parameter encryption, parameter aggregation, and parameter de-

cryption techniques.
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Figure 3.10: The working procedure of the softmax layer of the local model.

3.6.1 Key Generation

First of all, select two large equal bit-size prime numbers p and q randomly and indepen-

dently of each other that also satisfy the following condition 3.1.

gcd ((p× q), (p− 1)(q − 1)) = 1 (3.1)

Then, calculate n and λ by the following equation 3.2 and 3.3.

n = (p× q) (3.2)

λ = lcm (p− 1, q − 1) (3.3)

An integer g is selected randomly, where g ∈ Z∗
n2 and also ensures n divides the order of

g by checking the existence of the modular multiplicative inverse by the equation 3.4.

µ = (L (gλ mod n2))−1 mod n (3.4)
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where function L(α) is defined as L(α) = (α− 1)/n.

Thus, Ta generates the key pair (PuK, PrK) by the method of GeK(k), where security

parameter k ∈ Z+. The generated keys are PuK = (n, g) and PrK = (λ, µ). Finally, Ta

publishes PuK and distributes PrK to all the Ck as well as generates a symmetric key si

for S and each Ci, where i ∈ {1, 2, 3, 4, ..., K} to establish a secure communication channel

between S and each Ck.

3.6.2 Parameter Encryption

Model parameters wr
k,i is to be encrypted where 0 ≤ wr

k,i < n. Now, select a random

number R where 0 < R < n or R ∈ Z∗
n and encrypt the model parameter using PuK by

the following equation 3.5. Figure 3.11 shows the parameter encryption technique where

all model parameters wr
k,i is to be encrypted.

EP (wr
k,i) = g(wr

k,i) ·Rn mod n2 (3.5)
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Figure 3.11: The parameter encryption technique where all model parameters wr
k,i is to

be encrypted.
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3.6.3 Parameter Aggregation

The contribution ratios αk = {α1, α2, ..., αk} of each Ck are computed, and these αk are

multiplied by a factor of 103 to make them positive integers. Then, these amplified α′
k and

encrypted model parameters EP (wr
k,i) = {EP (wr

k,1), EP (wr
k,2), ...., EP (wr

k,K)} from all Ck

are aggregated by S using the following equation 3.6.

AP =
K∏

i=1
EP

(
wr

k,i

)
α′

i

=
[
EP (wr

k,1)α′
1
]
· ... ·

[
EP (wr

k,K)α′
K

]
=

[
g(wr

k,1)α′
1R

nα′
1

1 mod n2
]
· ... ·

[
g(wr

k,K)α′
K R

nα′
K

K mod n2
]

=
[
g(wr

k,1)α′
1R

nα′
1

1

]
· ... ·

[
g(wr

k,K)α′
K R

nα′
K

K

]
mod n2

= g
∑K

i=1(wr
k,i)α

′
i ·

K∏
i=1

R
nα′

i
i mod n2 (3.6)

3.6.4 Parameter Decryption

When each Ck received the encrypted aggregated model parameter AP , where AP ∈ Z∗
n2

from the S. Then, each Ck decrypts the encrypted aggregated model parameter by each

PrK by the following equation 3.7.

DP (w̄r
k,i) = L

(
AP mod n2

)
· µ mod n

= L
(
AP mod n2

)
·
[
L (gλ mod n2)

]−1 mod n

= L
(
AP mod n2

)
·
[ 1

L (gλ mod n2)

]
mod n

=
L

(
g

∑K

i=1(wr
k,i)α

′
i ·

∏K
i=1 R

nα′
i

i mod n2
)

L (gλ mod n2)
mod n

=
K∑

i=1
(wr

k) · αi mod n (3.7)
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Now, compute the average value and update the local model by the following equation

3.8. Here, 103 is a scalar used to transform the contribution ratios to positive integers.

DP (w̄r
k,i) =

DP (w̄r
k,i)

103 (3.8)

3.6.5 An Illustrative Example

The Paillier cryptosystem is homomorphic, meaning that the encrypted values of two num-

bers can be added, subtracted, or multiplied together, and the result will be the encrypted

value of the sum, difference, or product of the two numbers. This property makes the Pail-

lier cryptosystem useful for a variety of applications, such as secure electronic voting and

digital signatures.

Here is an illustrative example of how the Paillier cryptosystem can be used to encrypt

and decrypt a message:

Step 1: Setup

Client1 wants to send an encrypted message to Client2 using the Paillier cryptosystem.

Client1 generates his public and private keys:

Public Key: n = 1057 (product of two large prime numbers, p = 31 and q = 34) and g =

58 (randomly chosen integer modulo n)

Private Key: = lcm(p-1, q-1) = lcm(31, 34) = 527 (where lcm represents the least common

multiple)

Client1 shares his public key (n, g) with Client2.

Step 2: Encryption

Client2 wants to receive an encrypted message from Client1. He writes his plaintext

message, "Hello, Client2!". Now, he encrypts the message using Client1’s public key.
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To encrypt the message, Client2 first converts the plaintext message into a numerical

representation. He assigns each character a unique number according to some agreed-

upon mapping. For simplicity, let’s say ’H’ is 1, ’e’ is 2, ’l’ is 3, ’o’ is 4, ’,’ is 5, ’ ’ is 6, ’C’

is 7, ’l’ is 8, ’i’ is 9, ’e’ is 10, ’n’ is 11, ’t’ is 12, ’2’ is 13, and ’!’ is 14.

Now, client2 applies the encryption formula: C = (gm ∗ rn) mod n2, where C is the

ciphertext, m is the plaintext message, r is a randomly chosen integer, and n is the public

key component.

Client2 randomly selects r = 22. He substitutes the numerical representation of her plain-

text message into the formula and performs the calculations for each character:

For ’H’: - C1 = (581 ∗ 221057) mod 10572

For ’e’: - C2 = (582 ∗ 221057) mod 10572

He repeats this process for each character in the message.

Finally, Client2 sends the encrypted message C1, C2, ..., Cn to client1.

Step 3: Decryption

Client1 receives the encrypted message C1, C2, ..., Cn from Client2. He applies the

decryption process using his private key.

To decrypt the ciphertext, Client1 uses the decryption formula:

m = (L(Cmodn2)/L(gmodn2))modn, where m is the plaintext message, C is the cipher-

text, is the private key component, and L(x) = (x - 1) / n.

Client1 calculates the decryption for each ciphertext component:

For C1: - m1 = (L(C1527 mod 10572)/L(58527 mod 10572)) mod 1057

For C2: - m2 = (L(C2527 mod 10572)/L(58527 mod 10572)) mod 1057

Client1 repeats this process for each ciphertext component.

49



CHAPTER 3. PROPOSED METHODOLOGY

Finally, Client1 combines the numerical representation of the decrypted message and con-

verts it back into text according to the agreed-upon mapping. In this case, he obtains the

message "Hello, Client2!".

Step 4: Communication

Client1 and Client2 can now communicate securely, with Client1 encrypting his messages

using his public key, and Client2 decrypting them using Client1’s private key.

3.6.6 Complexity Analysis

The complexity of the Paillier cryptosystem can be analyzed in terms of the following

three operations:

Encryption:

The encryption operation takes a message and a public key as input and produces a

ciphertext as output. The complexity of the encryption operation is O(n2).

Decryption:

The decryption operation takes a ciphertext and a private key as input and produces the

original message as output. The complexity of the decryption operation is O(n3).

Key generation:

The key generation operation produces a public and private key pair. The complexity of

the key generation operation is O(n3).

The overall complexity of the Paillier cryptosystem is O(n3). This means that the Paillier

cryptosystem is relatively slow for large values of n. However, the Paillier cryptosystem is

still a secure and efficient encryption algorithm for many applications.
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3.7 Summary

In this chapter, we elaborate on the proposed dependable and privacy-preserving DFL

model. First, we explained the overall workflow of the proposed DFL model with two

clients and a key management authority. We have also briefly explained all the techniques,

including model initialization, local model training by medical clients, model parameter

encryption by medical clients, model parameter aggregation by the cloud server, and

local model update by medical clients. Then, we explained the overall computational

complexity of the selected models. Furthermore, we explained the overall architecture

of the proposed model, including the internal structure of the local and global models.

Finally, we concluded the chapter by briefly describing the cryptosystem-based secure

communication protocol.

This chapter sets the flow and context for coming chapters, which will build on the concepts

and workflows from here on. The next chapter covers the initial steps of the environment

setup, data collection, overview of the dataset, processing, and visualization procedures.

Also, we explain the most important parts of the model-building process, such as model

training, model-testing, evaluation, interpretation, and deployment.
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Chapter 4

Model Implementation and

Evaluation

The chapter continues with a discussion of environment setup, then an overview of the

dataset with the data preparation process, and concludes with the training and testing

process of the selected DTL and DFL models.

4.1 Environmental Setup

We have performed all the analyses on the cloud with the following GPU: NVIDIA K80/T4,

GPU memory: 16 GB, GPU memory clock: 3.40GHz, performance: 4.1 TFLOPS/8.1

TFLOPS, number of GPU cores: 7i, RAM: 32 GB (up-gradable to 35.75GB), solid-state

drive: 512GB, max execution time: 24 hours, and max idle time: 90 min.

4.2 Implementation Procedure

Figure 4.1 shows the overall implementation process of the proposed model with PySyft

and PyTorch. PySyft is an open-source library that combines different tools for building

secure and private machine learning models, especially for the FL model [87]. The main
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idea behind the PySyft library is to extend the APIs of popular DL mechanisms such

as PyTorch, Kera, and TensorFlow [58]. So, researchers can immediately build privacy-

preserving private and secure applications without having to learn a new DL or DTL

mechanism. Furthermore, PyTorch is another Python library that provides high-level

features, including tensor computation (like NumPy) with strong GPU acceleration [74].
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Figure 4.1: The overall implementation process of the proposed model with PySyft and
PyTorch libraries.

First, we installed the PySyft and PyTorch libraries along with other necessary libraries

to implement the proposed FL setting. Then, we created the virtual client devices by the

VirtualWorker method with the help of the TorchHook mechanism that simulates each

virtual client device. We have also initialized the central server called "secure_worker".

Each virtual client device and the central server has a unique pointer tensor (e.g., client 1

pointer tensor is 45140214847). Finally, the central server (PT: 61532244495) established

secure communications among all the virtual client devices. After successful secure com-

munication was established between client devices and the central server, we stored the

data in a tensor and then divided the data into features and targets.

Furthermore, we calculated the number of samples per virtual client device and divided the
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features and targets, and finally sent them to all virtual client devices. Next, we created

the model and sent a copy of the model to all the client devices. We have performed the

copy() and send() operation by model.copy().send(PT) mechanism. Then the model is

trained by its own datasets and calculates the performance metrics by 1000 iterations. We

defined several functions for training the model while keeping track of the training loss

and training accuracy for each client device individually. Each local client device model

improves a little bit in its own way and calculated the local losses and accuracies. If the

local loss is not minimized, encrypt the model parameter and send it to the central server

parallelly by backward() method. The central server calculated the average value of the

parameters by the avg_weight.get() method and distribute them to all the client devices.

Then, each client device decrypted the model parameters, updated the local model, and

retrained the local model using its private dataset. We performed rounds till we obtained

the desired model. We performed 8 rounds and finally got the final model and computed

the testing accuracy with the testing dataset. Therefore, we were able to train the client

devices without exposing each training data to others. We were also able to aggregate the

updated model parameters from each client device by a trusted central server to prevent

data privacy and security.

4.3 Dataset Description

The dataset has been downloaded from the genes database at the National Center for

Biotechnology Information (NCBI) which contains 583 sequences [7]. Table 4.1 summarizes

the dataset. There were 553 unique sequences after removing all repetitive sequences and

then performing our next analysis. The coronavirus family contained all of the virus

genes. If a gene contained the SARS CoV-2 gene, we assigned it a label of 0; otherwise, we

assigned it a label of 1. The dataset was unbalanced with 16.47% SARS CoV-2 positive

samples and 83.53% SARS CoV-2 negative samples.
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Table 4.1: An overview of the dataset with virus genes, label, and the number of samples.

Virus Genes Class Label Number of Samples
SARS-CoV-2 0 96
MERS-CoV 1 236
HCoV-EMC 1 4
HCoV-OC43 1 138
HCoV-229E 1 22
HCoV-4408 1 2
HCoV-NL63 1 58
HCoV-HKU1 1 17
SARS-CoV 1 7

SARS-CoV P2 1 1
SARS-CoV HKU-39849 1 1
SARS-CoV GDH-BJH01 1 1

Total samples - 583

4.3.1 Data Preparation

It is necessary to clean and prepare the raw DNA sequence dataset before applying DTL

and DFL methods to achieve optimal performance. Data preparation is normally done

by removing irrelevant features, removing duplicate samples, converting non-numerical

features into numeric features, and dealing with missing values if any.

The DNA sequences are made up of consecutive letters (e.g., A, C, G, and T) with no

spaces between them. So, the DNA sequence does not contain any words. We used a

unique representation technique to convert DNA sequences into word sequences with-

out losing position information. First, we remove duplicate samples from the dataset by

applying unique_everseen() method. Then, we used lower() method to convert the upper-

case sequence to the lowercase sequence for further processing. Now translate the lower-

case DNA sequences into short overlapping k-mers of length 3 using getKmers(sequences,

size=3) method [88]. Figure 4.2 shows the process of translating the DNA sequence into

a sequence of words with window size 3 and slide stride 1.
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ACCGATTATGCA

ACC  CCG  CGA  GAT ATT TTA TAT ATG TGC GCA

ACCGATTATGCAATTAAAGGTTTATACCTTCCCA

AAAGGTTTATCTCCCAGGTAACAATTAAAGGTT

ATAAAGGTTTATACCTT....................CCCAGGTAA

Genome Sequence

Window Size = 3

Next Window Size = 3
Slide with Stride =1

Generated Sequence of Words

First Word Next Word

Figure 4.2: The process of translating the DNA sequence into a sequence of words with
window size = 3 and slide stride = 1.

Figure 4.3 (a) shows a dictionary with 64 (43, 4 chars = ’ACGT’ and word size = 3)

distinct words, and each word is then represented by a one-hot vector of size 64. Then, we

set the size of the region and convert the word sequence into a one-hot 2D vector. Now,

we have a 2D numerical matrix that contains information on the specific position of each

nucleotide in the sequence. Figure 4.3 (b) shows a one-hot 2D vector representation of

generated DNA sequence words with region size 2. This matrix is then used as input for

the selected DTL and DFL models for further analysis.

4.4 Model Training and Testing

First, the pre-processed DNA sequence dataset has been split into the training (80%)

and testing (20%) datasets. Then, split the training dataset again into a new training

dataset (80%) for training the selected DTL and DFL models and a validation dataset

(20%) for tuning the hyperparameters. This splitting ratio is considered as an optimal

ratio to reduce overfitting [23, 88]. For the proposed DFL model, we first considered the
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Figure 4.3: (a) Dictionary representation (b) One-hot 2D vector representation of gener-
ated DNA sequence words with region size = 2.
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number of client devices and calculated the total number of samples per client device.

Then divided the dataset and sent it to all the client devices. We have a total of 553

unique pre-processed DNA sequence datasets and divided them into 4, 6, 10, 15, and 20

client devices, where each client device got 138, 92, 53, 37, and 28 pre-processed DNA

sequence datasets, respectively. Afterward, we selected the final model after a series of

operations. Figure 4.4 summarizes the steps involved in evaluating the performances of

the selected DTL models and proposed DFL models.

Combined
Dataset for

DTL
Algorithms


Training
Set


Testing
Set

Training
Set


Validation
Set

Data Preparation


Data Transformation


Data Cleaning


Data Integration


Models

Results

DTL
Algorithms


DFL
Algorithms


Local Data
Sources for

DFL
Algorithms


Dependability
Analysis

Efficiency

Availability


Scalability


D    


D 


D


OR

21

3

Figure 4.4: The overall evaluation process of the proposed DFL and the DTL models.

We have also considered DTL algorithms because some of their variants have been success-

fully applied to solve classification tasks related to DNA sequencing. Therefore, we have

considered Convolutional Neural Network (CNN), Fully Convolutional Networks (FCN),

Inception Network (IncepNet), LeCun Network (LeNet), and Residual Neural Network

(ResNet) algorithms because of their optimal performance [89]. The overall performance

of the selected DTL models has been evaluated with a wide range of hyperparameters.
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For all the selected DTL models, batch size, loss function, and the optimizer are 64,

categorical_crossentropy, and Adam, respectively. For the CNN, ResNet, and LeNet mod-

els, the hidden layer activation function is the same. Furthermore, FCN, IncepNet, and

ResNet models used the same number of hidden layers, but the units in the hidden layer

were different. Particularly for the LeNet model, the number of hidden layers is 2, and

the units in the hidden layer are 32, 64. We have evaluated the selected DTL models with

a wide range of tested hyperparameters and obtained the optimal performance with these

combinations. Moreover, we have used the Adam optimizer for all the models because it

combines the best properties of the AdaGrad and RMSProp techniques to provide an op-

timization algorithm. The hyper-parameters of all the selected DTL algorithms are shown

in Table 4.2.

Table 4.2: The hyper-parameters of the selected DTL models.

Parameters CNN FCN IncepNet ResNet LeNet
Number of

hidden Layers 4 3 3 3 2

Units in
hidden layers 32,64,128,64 128,256,128 32,64,32 128,256,128 32,64

Batch size 64 64 64 64 64
Hidden layer

activation function relu tanh linear relu relu

Output activation
function sigmoid softmax sigmoid softmax softmax

Dropout 0.2 N/A N/A 0.1 0.1
Optimizer Adam Adam Adam Adam Adam

4.5 Summary

This chapter covered quite a lot of ground in terms of understanding, processing, and

wrangling data. This chapter also includes the environment setup and model training

pipeline. Furthermore, we explained the most important aspects of the model-building

process, including deployment. Details of various types of model hyperparameters were

also discussed in this chapter. In the next chapter, we will discuss the overall performance

of the selected models with computational complexity and dependability analysis.
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Chapter 5

Result Analysis

This chapter discusses the overall performance of the selected models. We implemented

a wide range of analysis scenarios using various performance indicators and compared

them. We also analyzed the computational complexity and dependability performance of

the selected models.

5.1 Performance Indicators

We have used several performance indicators to analyze the results. The following perfor-

mance indicators were used to evaluate the selected models.

• True positive (Tpos) refers to the number of new infections that are correctly detected

as new infections.

• True negative (Tneg) is the number of existing infections that are correctly detected

as existing infections.

• False positive (Fpos) is the number of existing infections that are incorrectly detected

as new infections.

• False negative (Fneg) refers to the number of new infections that are incorrectly

detected as existing infections.
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The model’s performance across all classes is often measured by its accuracy metric, where

higher accuracy means better performance [46]. Equation 5.1 defines the mathematical

representation of accuracy.

Accuracy = Tpos + Tneg

Tpos + Tneg + Fpos + Fneg
(5.1)

The precision shows how accurate the model is in identifying positive samples [46]. Equa-

tion 5.2 defines the mathematical representation of precision.

Precision = Tpos

Tpos + Fpos
(5.2)

The recall measures the model’s ability to detect positive samples [46]. The higher the

recall, the more positive samples detected. Recall can be defined by the equation 5.3.

Recall = Tpos

Tpos + Fneg
(5.3)

The F1-score computes the harmonic mean of precision and recall, respectively. The F1-

score has a range of 0.0 to 1.0, with 1.0 denoting model perfection [46]. Equation 5.4

defines the mathematical representation of F1-score.

F1− Score = 2× Precision×Recall

Precision + Recall
(5.4)

Also, the ROC AUC is an important metric since it shows how efficiently the proposed

model can classify new infections and existing infections. Diagnostic accuracy, which is
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5.2. DTL METRICS ANALYSIS

needed to measure ROC AUC, depends on the sensitivity, or true positive rate (TPR),

often called recall, and the specificity, or true negative rate (TNR) [7]. Equations 5.5 and

5.6 define the mathematical representation of sensitivity and specificity, respectively.

Sensitivity = Tpos

Tpos + Fneg
(5.5)

Specificity = Tneg

Tneg + Fpos
(5.6)

Additionally, we incorporated a variety of analysis scenarios with different parameters in

this analysis (e.g., the number of hidden layers, the size of the hidden layers, the number

of epochs, the activation functions for the hidden and output layers, loss functions, etc.)

because these factors have a big impact on the performance metrics.

5.2 DTL Metrics Analysis

In recent years, DTL models have advanced features, and some of these variants have been

effectively applied to solve genome sequence classification problems [23,46]. Therefore, we

considered five DTL models (e.g., CNN, FCN, IncepNet, LeNet, and ResNet) because of

their optimal performance. Table 5.1 shows the performance comparison metrics of the

selected DTL models.

Table 5.1: DTL models’ performance comparison metrics.

Algorithm Accuracy Precision Recall F1-Score ROC AUC
CNN 0.9906 0.9903 0.9907 0.9902 0.8711
FCN 0.9860 0.9859 0.9860 0.9859 0.8687

IncepNet 0.9900 0.9896 0.9900 0.9897 0.8820
LeNet 0.9907 0.9903 0.9907 0.9901 0.8598
ResNet 0.9900 0.9901 0.9903 0.9898 0.8430
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In this analysis, we have considered a total number of 1000 epochs where the LeNet model

shows the optimal performance compared to the others, with an accuracy score of 0.9907,

precision score of 0.9903, recall score of 0.9907, F1-score of 0.9901, and ROC AUC score

of 0.8598. Figure 5.1 shows the accuracy score of the selected DTL models for every single

epoch for both the training and validation phases. On the other hand, the FCN model

shows the lowest performance in both phases. In detail, according to Figure 5.1, the

accuracy score of the FCN model starts with 0.9601 for the training phase and 0.9505 for

the validation phase in epoch number 15. However, it increased to 0.9850 in epoch number

90 and 0.9885 in epoch number 550 for the training and validation phases, respectively.

Figure 5.1: DTL models’ training and validation accuracy.

Moreover, the CNN model achieves the second-best performance with an accuracy score of

0.9906. The IncepNet and ResNet models achieve an accuracy score of 0.9900, which is the

third-best performance. However, the CNN, IncepNet, LeNet, and ResNet models have

an overall precision score of almost 0.9903, but the FCN model has the lowest precision

score of 0.9859. The lowest precision score of the FCN model indicates that most of the

predicted labels are incorrect. Taking into account all aspects of performance indicators,

we conclude that the LeNet model outperforms the other models. Figure 5.2 shows the

trend of the accuracy score of the LeNet model for both phases, where accuracy increases

rapidly at epoch number 10 and reaches a peak of close to 0.9907 at epoch number 530.

However, it remains almost stable up to the epoch number 1000, as shown in Figure 5.2.

The overall performance of the LeNet model indicates that most of the predicted labels

correctly classify new infections and existing infections.
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Figure 5.2: Training and validation accuracy of the LeNet model.

Furthermore, we analyzed the losses of the selected DTL models. Figure 5.3 shows each

epoch’s training and validation losses. The FCN model shows the highest losses in both

phases, which indicates the model cannot provide a reliable classification. In contrast, the

LeNet model shows the lowest loss in both phases. In detail, the loss of the LeNet model

starts at 0.3113 for the training phase and 0.5208 for the validation phase, as shown in

Figure 5.4. However, it decreases to 0.0707 in epoch number 130 and 0.0813 in epoch

number 135 for the training and validation phases, respectively. Then, the loss score

remains stable up to the end.

Figure 5.3: DTL models’ training and validation loss.
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The losses of the CNN, IncepNet, and ResNet models remain almost steady during both

phases, which is shown in Figure 5.3. The loss of the CNN and IncepNet models is 0.3001

at the beginning, which declines gradually to 0.0801 at epoch number 500 and remains

stable for both phases.

Figure 5.4: Training and validation loss of the LeNet model.

5.3 DFL Metrics Analysis

In this section, we have analyzed the DFL models with different numbers of client devices.

We have considered 4, 6, 10, 15, and 20 client devices and 8 rounds for this analysis

because the flattening characteristics of the curve and the performance metrics were not

increasing literally. Table 5.2 shows the quantitative performance metrics summary of the

DFL models with different numbers of client devices.

Table 5.2: DFL models’ performance comparison metrics.

DFL Accuracy Precision Recall F1 Score ROC AUC
K=4 0.9869 0.9785 0.9191 0.9393 0.9440
K=6 0.9912 0.9823 0.9804 0.9624 0.9824
K=10 0.9899 0.9808 0.8620 0.8821 0.9422
K=15 0.7931 0.6783 0.7706 0.7543 0.7365
K=20 0.6646 0.6071 0.6280 0.6087 0.5692

First, we considered 4 client devices for this analysis. Figure 5.5 shows the classification
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performance of the DFL model using 4 client devices. In more detail, the accuracy of

the model starts at 0.8350 and increases to 0.9869 in round number 6. Then, the score

remains stable up to round number 8, which indicates that the model can provide a

reliable classification between new infections and existing infections. Also, the precision

score is 0.5350 at the beginning and increases gradually to 0.9785 at round number 5,

which remains stable up to the last round. Furthermore, the recall score of the model

jumps rapidly in round number 4 and it reaches a peak of close to 0.9191 at epoch number

6. According to Figure 5.5, which remains almost stable up to round number 8. Moreover,

the model shows the lowest F1 score at the beginning. In detail, the F1 score of the model

starts with 0.2702 at round number 1, and it increases dramatically to 0.9189 in round

number 3 and 0.9393 in round number 6. The score remained constant up to the last

round. Finally, the ROC AUC of the model starts with a score of 0.4502 at the beginning.

But this score rises gradually with the increase of the round number and reaches 0.9440

when the round number is 5, and then remains stable up to the end.

Figure 5.5: Classification performance of the DFL model using 4 client devices.
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Next, we considered 6 client devices for analysis. Figure 5.6 shows the classification

performance of the DFL model using 6 client devices. In more detail, the accuracy of

the model starts at 0.8830 and increases to 0.9912 in round number 5. Then, the score

remains stable up to round number 8, which indicates that the model can provide a

reliable classification between new infections and existing infections. Also, the precision

score is 0.5490 at the beginning and increases gradually to 0.9823 at round number 5,

which remains stable up to the last round. Furthermore, the recall score of the model

jumps rapidly in round number 5 and it reaches a peak of close to 0.9804 at epoch number

6. According to Figure 5.6, which remains almost stable up to round number 8.

Figure 5.6: Classification performance of the DFL model using 6 client devices.

Moreover, the model shows the lowest F1 score at the beginning. In detail, the F1 score of

the model starts with 0.2805 at round number 1, and it increases dramatically to 0.9288

in round number 4 and 0.9624 in round number 7. The score remained constant up to

the last round. Finally, the ROC AUC of the model starts with a score of 0.5508 at

the beginning. But this score rises gradually with the increase of the round number and

reaches 0.9824 when the round number is 5, and then remains stable up to the end.
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Figure 5.7: Classification performance of the DFL model using 10 client devices.

Moreover, we considered 10 client devices for analysis. Figure 5.7 shows the classification

performance of the DFL model using 10 client devices. In more detail, the accuracy of

the model starts at 0.9001 and increases to 0.9899 in round number 5. Then, the score

remains stable up to round number 8, which indicates that the model can provide a

reliable classification between new infections and existing infections. Also, the precision

score is 0.5201 at the beginning and increases gradually to 0.9808 at round number 5,

which remains stable up to the last round. Furthermore, the recall score of the model

jumps rapidly in round number 5 and it reaches a peak of close to 0.8620 at epoch number

6. According to Figure 5.7, which remains almost stable up to round number 8. Moreover,

the model shows the lowest F1 score at the beginning. In detail, the F1 score of the model

starts with 0.2660 at round number 1, and it increases dramatically to 0.9288 in round

number 4 and 0.8821 in round number 7. The score remained constant up to the last

round. Finally, the ROC AUC of the model starts with a score of 0.6228 at the beginning.

But this score rises gradually with the increase of the round number and reaches 0.9422

when the round number is 5, and then remains stable up to the end.
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Furthermore, we considered 15 client devices for analysis. Figure 5.8 shows the classifica-

tion performance of the DFL model using 15 client devices. In more detail, the accuracy

of the model starts at 0.6830 and increases to 0.7931 in round number 6. Then, the score

remains stable up to round number 8, which indicates that the model can not provide a

reliable classification between new infections and existing infections.

Figure 5.8: Classification performance of the DFL model using 15 client devices.

Also, the precision score is 0.5100 at the beginning and increases gradually to 0.6783 at

round number 6, which is not stable up to the last round. Furthermore, the recall score

of the model jumps rapidly in round number 5 and it reaches a peak of close to 0.7706

at epoch number 6. According to Figure 5.8, which remains almost stable up to round

number 8. Moreover, the model shows the lowest F1 score at the beginning. In detail, the

F1 score of the model starts with 0.1608 at round number 1, and it increases dramatically

to 0.9288 in round number 4 and 0.7543 in round number 7. The score remained constant

up to the last round. Finally, the ROC AUC of the model starts with a score of 0.3325 at

the beginning. But this score rises gradually with the increase of the round number and

reaches 0.7365 when the round number is 5, and then remains stable up to the end.

70



5.3. DFL METRICS ANALYSIS

Lastly, we also considered 20 client devices for analysis. Figure 5.9 shows the classification

performance of the DFL model using 20 client devices. Figure 5.10 and Figure 5.11 show

the comparison of DFL model accuracy and precision with different numbers of clients. In

more detail, the accuracy of the model starts at 0.4850 and increases to 0.6746 in round

number 6. Then, the score decreases to 0.6646 to round number 8, which indicates that

the model can not provide a reliable classification between new infections and existing

infections. Also, the precision score is 0.1100 at the beginning and increases gradually to

0.6071 at round number 7, which is stable up to the last round. Furthermore, the recall

score of the model jumps rapidly in round number 6 and it reaches a peak of close to

0.6280 at epoch number 6. According to Figure 5.9, which remains almost stable.

Figure 5.9: Classification performance of the DFL model using 20 client devices.

Moreover, the model shows the lowest F1 score at the beginning. In detail, the F1 score of

the model starts with 0.2404 at round number 1, and it increases dramatically to 0.6244

in round number 4 and 0.6087 in round number 7. The score remained constant up to

the last round. Finally, the ROC AUC of the model starts with a score of 0.1882 at

the beginning. But this score rises gradually with the increase of the round number and

reaches 0.5692 when the round number is 5, and then remains stable up to the end.
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Figure 5.10: Comparison of DFL model accuracy with different numbers of clients.

Figure 5.11: Comparison of DFL model precision with different numbers of clients.
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5.4 Performance Comparison with State-of-the-Art Studies

We have considered different DTL and DFL models for their optimal performance and

then applied them to the GS dataset. First, we applied different DTL models and selected

the best model based on their performance. But, due to the sensitive nature of the patients

data, the DTL technique of transferring data to the central machine or server may create

serious privacy and security issues for the patient’s data. Furthermore, we have applied

the DFL models with different numbers of client devices and all the models perform

significantly better in most cases by ensuring the security and privacy of patients’ data.

Moreover, the proposed model has adequate efficiency, scalability, low loss, and better

classification accuracy than others. Figure 5.12 shows the comparison of proposed DFL

(K=6) and DTL (LeNet) models in terms of (a) classification performance, (b) training

time (sec), and (c) testing time (sec). Finally, the proposed model can effectively identify

and classify new infections and existing infections from genome sequences by ensuring the

privacy and security of patients’ data.
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Figure 5.12: Comparison of proposed DFL (K=6) and DTL (LeNet) models in terms of
(a) classification performance, (b) training time (s), and (c) testing time (s).
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5.5 Computational Complexity Analysis

The computation complexity (CoX) has also been calculated for each DTL and DFL

model. The total number of parameters, training time (sec), and testing time (sec) for

each model are compared in Table 5.3. In terms of the DTL models, the CNN model has

the minimum CoX of the others, requiring 33869.838 sec of training time and 2.718 sec of

testing time for a total of 202,686 trainable parameters. In contrast, the FCN model has

the maximum CoX and a total of 265,986 trainable parameters. Moreover, the IncepNet

model has the second-maximum CoX, with a training time of 36657.213 seconds and a

testing time of 5.721 seconds for 233,074 trainable parameters. Furthermore, the LeNet

model has a training time of 38936.911 sec and a testing time of 3.490 sec, the second-

longest testing time after the CNN model, and the LeNet model has more parameters than

the CNN model. Finally, the ResNet model, which has a lower CoX than the FCN and

IncepNet models, requires a testing time of 4.014 seconds and a training time of 44401.586

seconds for a total of 506,818 trainable parameters.

Table 5.3: Comparison of total parameters, training time, testing time of DTL and DFL
models.

– Model Params Training Time (Sec) Testing Time (Sec)

D
T

L

CNN 202,686 33869.838 2.718
FCN 265,986 46756.338 7.722

IncepNet 233,074 36657.213 4.229
LeNet 360,052 38936.911 3.490
ResNet 506,818 44401.586 4.014

D
F

L

DFL (K=4, R=8) 350,985 38242.180 3.660
DFL (K=6, R=8) 350,985 41928.245 5.105
DFL (K=10, R=8) 350,985 42763.788 5.667
DFL (K=15, R=8) 350,985 47921.078 6.140
DFL (K=20, R=8) 350,985 49921.078 6.940

Next, we analyzed the CoX of the DFL models where each model has the same number of

trainable parameters and the same number of communication rounds. However, the client

devices vary, and we compared training and testing times with regard to the number of

client devices. The DFL model with 4 client devices has the smallest CoX, with training
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and testing times of 38242.180 and 3.660 seconds, respectively. The highest CoX, however,

is seen in the DFL model with 20 client devices. In this analysis, we observed that the

CoX rises in direct proportion to the number of client devices. Therefore, finding the best

performance with a low CoX is our key priority. The proposed DFL model (K=6) requires

a testing time of 5.105 sec and a training time of 41928.245 sec for a total of 350,985

trainable parameters with the best performance metrics. Considering all the performance

indicators, we think the proposed DFL model (K=6) can be used for practical applications

in this field with lower computational complexity.

5.6 Dependability Performance Analysis

In this section, we analyzed the dependability performance of our proposed model. De-

pendability performance analysis includes efficiency, availability, and scalability of the

model [22, 23]. The proposed model outperforms several models with low CoX in terms

of performance evaluations (e.g., accuracy, precision, recall, F1-score, ROC AUC, etc.),

which ensures the efficiency of the proposed model.
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Figure 5.13: Dependability performance analysis of the proposed DFL model.
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CHAPTER 5. RESULT ANALYSIS

Additionally, we have taken various strategies for choosing important features before im-

plementing the proposed model to correctly classify both new infections and existing infec-

tions without experiencing any type of failure or requiring a repair action, thus maintaining

the availability of the proposed model. Figure 5.13 shows the scalability performance of

the proposed model. Finally, we observed an increase in the scalability properties of the

proposed model by dividing the dataset among different numbers of clients with maximum

consistency that has been acquired from a wider range of DNA sequence data. As a result,

the proposed model’s accuracy remained almost the same with an increase in the round

number from 3 to 8, which indicates the model’s scalability.

5.7 Summary

We have explained the overall performance of the selected models in this chapter. First,

we used several performance indicators to analyze the results. Then, we analyzed the

performance metrics of deep transfer learning models. Furthermore, we have analyzed

the performance metrics of the deep federated learning models with different numbers of

clients. We also analyzed the computational complexity and dependability performance

of the selected models.

In the next chapter, we will discuss the pitfalls and limitations that impacted the in-

terpretation of the findings from our research. Finally, we will summarize the major

contributions of this thesis and present a road map for future development.
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Chapter 6

Conclusion

When there is an outbreak of a viral disease, it is important to know the nature of the virus

so that it can be stopped, people who are sick with the virus can be treated, and vaccines

can be made to stop the spread of the virus. Traditionally, alignment-based methods such

as BLAST can be time-consuming, and face challenges when comparing large numbers

of sequences that have significant differences in their composition. Also, about 35.2% of

173 samples did not test positive initially, resulting in false-negative findings. As a result,

patients with negative results should repeat the test to avoid misdiagnosis. Current tools

used to detect the virus, such as the molecular technique and RT-PCR, require support

from newer and faster DL or DTL methods. Due to the sensitive nature of the patients

data, the traditional DL or DTL methods of transferring data to the central machine or

server may create serious privacy and security issues. Also, the methods did not consider

dependability performance analysis. Thus, it is vital to develop a dependable model that

is capable of identifying the new infection ensuring patient privacy and security.

6.1 Summary of the Research

In this work, we proposed a privacy-preserving DFL-based dependable identification model

of new infections from genome sequences along with improved performance metrics in

comparison to several other existing approaches. The proposed model has an overall
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CHAPTER 6. CONCLUSION

accuracy of 99.12% after IID distributes the dataset among six clients. In addition, the

proposed model outperforms the existing models in terms of other performance metrics

for the same configuration of the dataset. This demonstrates that the proposed model can

effectively classify genome sequences, ensuring dependability, minimum computational

complexity, and proper privacy and security of patients data. Moreover, the proposed

model has proven its potential to protect other critical medical infrastructures where

dependable identification models and secure data processing are the main challenges. More

precisely, the proposed model provides a complete guideline for future researchers.

6.2 Limitations

In this section, we discussed the pitfalls and limitations of this research. The limitations of

this study are those characteristics that impacted the interpretation of the findings from

our research. The main pitfalls and limitations of this thesis are given below.

The first limitation involves bandwidth. As we have implemented all the models on the

server (Google Colaboratory), bandwidth may cause time complexity [52,69]. The second

one is due to limited resources (RAM: 32 GB, HDD: 512 GB, Hardware Accelerator:

TPU), so we can not implement more than 24 clients for our analysis, though we have a

premium subscription. The third limitation is that the DFL model requires significantly

more local device power and memory to train the model [58,69]. Also, if the model training

is conducted while the device is in use, it reduces the devices performance [69].

Finally, we have implemented all the implementations in Python, but this language comes

with its own share of pitfalls [90]. One of the most critical limitations it suffers from

is in terms of execution speed [23, 90]. Being an interpreted language, it is slow when

compared to compiled languages. This limitation can be restrictive in scenarios where

extremely high-performance code is required. This is a major area of improvement for

future implementations, and every subsequent Python version addresses it [90]. Although

we have to admit it can never be as fast as a compiled language, we are convinced that it

makes up for this deficiency by being super-efficient and effective in other fields.
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6.3 Future Directions

In the future, we will concentrate on many DNA sequences and optimize the model hyper-

parameters for improved performance. We will also try to implement this model based on

decentralized devices or servers with proper privacy and security of patients’ data. Deep

federated learning is opening new doors every day. Its application to different domains

and problems is showcasing its potential to solve problems previously unknown. Deep

federated learning is an ever-evolving and very involved field to ensure the dependability

of the model and the proper privacy and security of data.
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Appendix A

Data Preparation

1 # -*- coding : utf -8 -*-

2 """ DNA Sequence Preprocessing . ipynb

3

4 Automatically generated by Colaboratory .

5

6 Original file is located at

7 https :// colab . research . google .com/drive /1

VBDNj6Vrz8vC7w209NlGOLSarPXmTBrE

8

9 ## DNA Sequencing Pre - Processing

10

11 By: Sk. Tanzir Mehedi

12

13 1. Import necessary libraries

14 """

15

16 import numpy as np

17 import pandas as pd

18 import matplotlib . pyplot as plt

19 from IPython . display import Image

20 from sklearn . feature_extraction .text import CountVectorizer

21

22 """ 2. Load DNA sequence data """

23
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24 data = pd. read_table (’sequencesLabels .txt ’)

25 data.head ()

26

27 """ 3. Load full dataset """

28

29 data

30

31 """ 4. Load dataset overview """

32

33 Image(" DataOverview .JPG")

34

35 """ 5. Select window size and convert to lowaercase """

36

37 def getKmers (sequences , size =3):

38 return [ sequences [x:x+size ]. lower () for x in range (len( sequences ) -

size + 1)]

39

40 """ 6. Now convert data sequences into short overlapping k-mers of legth 3

using getKmers function ."""

41

42 data[’words ’] = data. apply ( lambda x: getKmers (x[’sequences ’]), axis =1)

43 data = data.drop(’sequences ’, axis =1)

44

45 data

46

47 """ ### Now , coding sequence data is changed to lowercase , split up into all

possible k-mer words of length 3 and ready for the next step.

48

49 7. Convert the lists of k-mers for each gene into string sentences of words

that the count vectorizer can use. We can also make a y variable to

hold the class labels .

50 """

51

52 texts = list(data[’words ’])

53 for item in range (len(texts)):

54 texts[item] = ’ ’.join(texts[item ])

55 y_data = data.iloc [:, 0]. values

56

57 y_data
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58

59 print (texts [1])

60

61 """ 8. Now apply the BAG of WORDS using CountVectorizer using NLP """

62

63 cv = CountVectorizer ( ngram_range =(2 ,2))

64 X = cv. fit_transform (texts)

65

66 cv

67

68 X

69

70 print (X.shape)

71

72 """ 9. Check class distributation of the dataset """

73

74 data[’class ’]. value_counts (). sort_index ().plot.bar ()

75

76 """ 10. Dictionary representation of One -hot 2D vector representation of

generated DNA sequence words with region size = 2"""

77

78 seqs = texts

79 CHARS = ’ACGT ’

80 CHARS_COUNT = len(CHARS)

81

82 maxlen = max(map(len , seqs))

83 res = np.zeros (( len(seqs), CHARS_COUNT * maxlen ), dtype=np.uint8)

84

85 for si , seq in enumerate (seqs):

86 seqlen = len(seq)

87 arr = np. chararray (( seqlen ,), buffer =seq)

88 for ii , char in enumerate (CHARS):

89 res[si][ii* seqlen :(ii +1)* seqlen ][ arr == char] = 1

90

91 res

92

93 res.shape

94

95 """ 11. Print full 2-D vector """
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96

97 np. set_printoptions ( threshold =100000000)

98 print (res)

99

100 df = pd. DataFrame (res)

101 df

102

103 """ 12. Write the pre - processed dataset on our disk for further steps ."""

104

105 file = open(" sample .txt", "w+")

106 content = str(res)

107 file.write( content )

108 file.close ()

109

110 """#TML Implementation """

111

112 from sklearn . naive_bayes import MultinomialNB

113 from sklearn . model_selection import train_test_split

114 from sklearn . metrics import accuracy_score , f1_score , precision_score ,

recall_score

115

116 """ 1. Splitting the dataset into the training set and test set """

117

118 X_train , X_test , y_train , y_test = train_test_split (X, y_data , test_size =

0.20 , random_state =42)

119

120 print ( X_train .shape)

121 print ( X_test .shape)

122

123 """ 2. A multinomial naive Bayes classifier will be created . I previously

did some parameter tuning and found the ngram size of 2 ( reflected in

the Countvectorizer () instance ) and a model alpha of 0.1 did the best (

the alpha parameter was determined by grid search previously )"""

124

125 classifier = MultinomialNB (alpha =0.1)

126 classifier .fit(X_train , y_train )

127

128 """ 3. Define the classifier """

129
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130 y_pred = classifier . predict ( X_test )

131

132 """ 4. Check the prformance metrices """

133

134 print (" Confusion matrix \n")

135 print (pd. crosstab (pd. Series (y_test , name=’Actual ’), pd. Series (y_pred , name=

’Predicted ’)))

136 def get_metrics (y_test , y_predicted ):

137 accuracy = accuracy_score (y_test , y_predicted )

138 precision = precision_score (y_test , y_predicted , average =’weighted ’)

139 recall = recall_score (y_test , y_predicted , average =’weighted ’)

140 f1 = f1_score (y_test , y_predicted , average =’weighted ’)

141 return accuracy , precision , recall , f1

142 accuracy , precision , recall , f1 = get_metrics (y_test , y_pred )

143 print (" Accuracy = %.3f \ nPrecision = %.3f \ nRecall = %.3f \nF1 - Score = %.3f

" % (accuracy , precision , recall , f1))

Listing A.1: DNA sequence data preprocessing
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DTL Models Implementation

1 # -*- coding : utf -8 -*-

2 """ DTL -LeNet . ipynb

3

4 Automatically generated by Colaboratory .

5

6 Original file is located at

7 https :// colab . research . google .com/ drive /1 mTT_2 - NeuXFSPJnvcvcJVu -

i4omh2jQg

8

9 ## Deep Transfer Learning with LeNet on DNA Sequence Dataset

10

11 By: Sk. Tanzir Mehedi

12

13 Importing libraries

14 """

15

16 # Commented out IPython magic to ensure Python compatibility .

17 import time

18 import sklearn

19 import numpy as np

20 import pandas as pd

21 import tensorflow as tf

22 import tensorflow .keras as keras

23 import matplotlib . pyplot as plt
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24 from sklearn import metrics

25 from sklearn . model_selection import train_test_split

26 from sklearn . metrics import classification_report , confusion_matrix

27 from tensorflow .keras. callbacks import TensorBoard

28 import warnings

29 # % matplotlib inline

30 warnings . filterwarnings (’ignore ’)

31

32 """ Importing the Dataset """

33

34 dataset =pd. read_csv (’preprocessedDNASequenceDatase .csv ’)

35

36 """ Exploratory Data Analysis """

37

38 dataset .head ()

39

40 properties = list( dataset . columns . values )

41 properties . remove (’label ’)

42 X = dataset [ properties ]

43 y = dataset [’label ’]

44

45 """ Split Dataset into Training Set and Test Set """

46

47 X_train , X_test , y_train , y_test = train_test_split (X, y, test_size =0.3 ,

random_state =0)

48

49 """ Check the nb classes """

50

51 nb_classes = len(np. unique (np. concatenate (( y_train , y_test ), axis =0)))

52 nb_classes

53

54 """ Transform the labels from integers to one hot vectors """

55

56 enc = sklearn . preprocessing . OneHotEncoder ( categories =’auto ’)

57 enc.fit(np. concatenate (( y_train , y_test ), axis =0). reshape (-1, 1))

58

59 y_train = enc. transform ( y_train . values . reshape (-1, 1)). toarray ()

60 y_test = enc. transform ( y_test . values . reshape (-1, 1)). toarray ()

61
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62 """ Save orignal y because later we will use binary """

63

64 y_true = np. argmax (y_test , axis =1)

65

66 """ If univariate then add a dimension to make it multivariate with one

dimension """

67

68 if len( X_train . shape) == 2:

69 X_train = X_train . values . reshape (( X_train .shape [0], X_train .shape

[1] , 1))

70 X_test = X_test . values . reshape (( X_test .shape [0], X_test .shape [1],

1))

71 input_shape = X_train .shape [1:]

72

73 """ Making the Model """

74

75 input_layer = keras. layers .Input( input_shape )

76

77 conv_1 = keras. layers . Conv1D ( filters =5, kernel_size =5, activation =’relu ’,

padding =’same ’)( input_layer )

78 conv_1 = keras. layers . MaxPool1D ( pool_size =2)( conv_1 )

79

80 conv_2 = keras. layers . Conv1D ( filters =20, kernel_size =5, activation =’relu ’,

padding =’same ’)( conv_1 )

81 conv_2 = keras. layers . MaxPool1D ( pool_size =4)( conv_2 )

82

83 # here did not mention the number of hidden units in the fully - connected

layer

84 # so I took the lenet

85

86 flatten_layer = keras. layers . Flatten ()( conv_2 )

87 fully_connected_layer = keras. layers .Dense (500 , activation =’relu ’)(

flatten_layer )

88

89 output_layer = keras. layers .Dense(nb_classes , activation =’softmax ’)(

fully_connected_layer )

90

91 model = keras. models .Model( inputs = input_layer , outputs = output_layer )

92
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93 """ Compile the Model """

94

95 model. compile ( optimizer =keras. optimizers .Adam(lr =0.01 , decay =0.005) , loss=’

categorical_crossentropy ’, metrics =[’accuracy ’])

96 model. summary ()

97

98 """ Result View with TensorBoard """

99

100 NAME = " LeNet on DNA Sequence Dataset "

101 tensorboard = TensorBoard ( log_dir ="logs /{}". format (NAME), histogram_freq =

1, profile_batch = 5)

102

103 """ Fitting the model """

104

105 # x_val and y_val are only used to monitor the test loss and NOT for

training

106 batch_size = 64

107 nb_epochs = 1000

108

109 mini_batch_size = int(min( X_train .shape [0] / 10, batch_size ))

110

111 start_time = time.time ()

112

113 history = model.fit(X_train , y_train , batch_size = mini_batch_size , epochs =

nb_epochs , validation_data =( X_test , y_test ),callbacks =[ tensorboard ])

114

115 duration = time.time () - start_time

116

117 """ Making Predictions """

118

119 start_time = time.time ()

120 y_pred = model. predict ( X_test )

121 duration1 = time.time () - start_time

122

123 """ Convert the predicted from binary to integer """

124

125 y_pred = np. argmax (y_pred , axis =1)

126

127 """ Evaluating the Algorithm """

88



128

129 print ( confusion_matrix (y_true , y_pred ))

130 print ( classification_report (y_true , y_pred ))

131

132 # Model Accuracy : how often is the classifier correct ?

133 print (" Accuracy :",metrics . accuracy_score (y_true , y_pred ))

134

135 # Model Precision : what percentage of positive tuples are labeled as such?

136 print (" Precision :",metrics . precision_score (y_true , y_pred , average =’

weighted ’,labels =np. unique ( y_pred )))

137

138 # Model Recall : what percentage of positive tuples are labelled as such?

139 print (" Recall :",metrics . recall_score (y_true , y_pred , average =’weighted ’,

labels =np. unique ( y_pred )))

140

141 # Calculate F1 Score

142 print ("F1 Score :",metrics . f1_score (y_true , y_pred , average =’weighted ’,

labels =np. unique ( y_pred )))

143

144 # Calculate Mean Absolute Error

145 print ("Mean Absolute Error :",metrics . mean_absolute_error (y_true , y_pred ))

146

147 # kappa

148 print (" Cohens kappa :", metrics . cohen_kappa_score (y_true , y_pred ))

149

150 # ROC AUC

151 print ("ROC AUC:", metrics . roc_auc_score (y_true , y_pred ))

152

153 #Train time

154 print (’Train Time(s): ’,duration )

155

156 #Test time

157 print (’Test Time(s): ’,duration1 )

158

159 # list all data in history

160 print ( history . history .keys ())

161

162 # summarize history for loss

163 plt.plot( history . history [’loss ’])
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164 plt.plot( history . history [’val_loss ’])

165 plt.title(’model loss ’)

166 plt. ylabel (’loss ’)

167 plt. xlabel (’epoch ’)

168 plt. legend ([ ’train ’, ’test ’], loc=’upper left ’)

169 plt.show ()

170

171 # summarize history for accuracy

172 plt.plot( history . history [’accuracy ’])

173 plt.plot( history . history [’val_accuracy ’])

174 plt.title(’model accuracy ’)

175 plt. ylabel (’accuracy ’)

176 plt. xlabel (’epoch ’)

177 plt. legend ([ ’train ’, ’test ’], loc=’upper left ’)

178 plt.show ()

179

180 keras. backend . clear_session ()

Listing B.1: DTL with LeNet on DNA Sequence Dataset

90



Appendix C

DFL Models Implementation

1 # -*- coding : utf -8 -*-

2 """ DFL -LeNet . ipynb

3

4 Automatically generated by Colaboratory .

5

6 Original file is located at

7 https :// colab . research . google .com/ drive /1

nmZ5HWhKam_t9QMCk1xY1kOXfzrrnxeO

8

9 ## DFL with LeNet on DNA Sequence Dataset

10

11 By: Sk. Tanzir Mehedi

12 """

13

14 import urllib . request

15

16 def download_url (url , save_as ):

17 response = urllib . request . urlopen (url)

18 data = response .read ()

19 file = open(save_as , ’wb ’)

20 file.write(data)

21 file.close ()

22 response .close ()

23
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24 def read_binary_file (file):

25 f = open(file ,’rb ’)

26 block = f.read ()

27 return block. decode (’utf -16 ’)

28

29 def split_text_in_lines (text):

30 return text.split(’\r\n’)

31

32 def split_by_tabs (line):

33 return line.split(’\t’)

34

35 names_link = ’https :// raw. githubusercontent .com/ tanzirmehedi /Deep -Federated

- Learning /main/ preprocessedDNASequenceDataset . names ’

36 data_link = ’https :// raw. githubusercontent .com/ tanzirmehedi /Deep -Federated -

Learning /main/ preprocessedDNASequenceDataset .data ’

37

38 diagnosis_names = ’preprocessedDNASequenceDataset . names ’

39 diagnosis_data = ’preprocessedDNASequenceDataset .data ’

40 download_url (names_link , diagnosis_names )

41 download_url (data_link , diagnosis_data )

42

43 import numpy as np

44

45 def parse_double (field):

46 field = field. replace (’,’, ’.’)

47 return float (field)

48

49 def parse_boolean (field):

50 return 1. if field == ’yes ’ else 0.

51

52 def read_np_array (file = diagnosis_data ):

53 text = read_binary_file (file)

54 lines = split_text_in_lines (text)

55 rows = []

56 for line in lines:

57 if line == ’’: continue

58 line = line. replace (’\r\n’, ’’)

59 fields = split_by_tabs (line)

60 row = []
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61 j = 0

62 for field in fields :

63 value = parse_double (field) if j == 0 else parse_boolean (field)

64 row. append (value)

65 j += 1

66 rows. append (row)

67 matrix = np.array(rows , dtype = np. float32 )

68 return matrix

69

70 matrix = read_np_array ()

71 matrix

72

73 n_samples , n_dimensions = matrix .shape

74 print ( n_samples )

75 print ( n_dimensions )

76

77 def get_random_indexes (n):

78 indexes = list( range(n))

79 random_indexes = []

80 for i in range (n):

81 r = np. random . randint (len( indexes ))

82 random_indexes . append ( indexes .pop(r))

83 return random_indexes

84

85 def get_indexes_for_2_datasets (n, training = 80):

86 indexes = get_random_indexes (n)

87 train = int( training / 100. * n)

88 return indexes [: train], indexes [train :]

89

90 matrix = read_np_array ()

91 n_samples , n_dimensions = matrix .shape

92

93 train_indexes , test_indexes = get_indexes_for_2_datasets ( n_samples )

94 train_data = matrix [ train_indexes ]

95 test_data = matrix [ test_indexes ]

96

97 def print_dataset (name , data):

98 print(’Dataset {}. Shape : {} ’. format (name , data.shape))

99 print(data)
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100

101 print (len( train_data ))

102 print (len( test_data ))

103 print ( train_indexes )

104 print ( test_indexes )

105

106 print_dataset (’Train ’, train_data )

107

108 print_dataset (’Test ’, test_data )

109

110 import torch

111 from torch. autograd import Variable

112 import torch.nn as nn

113 import torch.nn. functional as F

114

115 input_size = 64

116 learning_rate = 0.01

117 num_iterations = 1000

118

119 class LogisticRegression (torch.nn. Module ):

120

121 def __init__ (self):

122 super ( LogisticRegression , self). __init__ ()

123 self. linear = torch.nn. Linear (input_size , 1)

124

125 def forward (self , x):

126 return torch. sigmoid (self. linear (x))

127

128 # Commented out IPython magic to ensure Python compatibility .

129 def decide (y):

130 return 1. if y >= 0.5 else 0.

131

132 decide_vectorized = np. vectorize ( decide )

133

134 to_percent = lambda x: ’{:.2f}% ’. format (x)

135

136 def compute_accuracy (model , input , output ):

137 prediction = model( input ).data.numpy ()[:, 0]

138 n_samples = prediction .shape [0] + 0.
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139 prediction = decide_vectorized ( prediction )

140 equal = prediction == output .data.numpy ()

141 return 100. * equal.sum () / n_samples

142

143 def get_input_and_output (data):

144 input = Variable (torch. tensor (data [:, :6], dtype = torch. float32 ))

145 output = Variable (torch. tensor (data [:, 6], dtype = torch. float32 ))

146 # output = Variable (torch . tensor (data [:, 6], dtype = torch . float32 )[... ,

None ])

147

148 return input , output

149

150 input , output = get_input_and_output ( train_data )

151 test_input , test_output = get_input_and_output ( test_data )

152

153 import matplotlib . pyplot as plt

154 # % matplotlib inline

155

156 DFL_title = ’DFL with LeNet on DNA Sequence Dataset ’

157

158

159 def plot_graphs (DFL_title , losses , accuracies ):

160 plt.plot( losses )

161 plt.title(f"{ DFL_title } - Training Loss")

162 plt. xlabel (" Iterations ")

163 plt. ylabel (" Training Loss")

164 plt.show ()

165 plt.plot( accuracies )

166 plt.title(f"{ DFL_title } - Training Accuracy ")

167 plt. xlabel (" Iterations ")

168 plt. ylabel (" Training Accuracy ( Percent %)")

169 plt.show ()

170

171 def train_model (DFL_title , input , output , test_input , test_output ):

172 model = LogisticRegression ()

173 criterion = torch.nn. BCELoss ( size_average =True)

174 optimizer = torch.optim.SGD(model. parameters (), lr= learning_rate )

175 losses = []

176 accuracies = []
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177 n_samples , _ = input .shape

178 for iteration in range( num_iterations ):

179 optimizer . zero_grad ()

180 prediction = model( input )

181 loss = criterion (prediction , output )

182 loss. backward ()

183 optimizer .step ()

184 if iteration % 500 == 0:

185 train_acc = compute_accuracy (model , input , output )

186 train_loss = loss.item ()

187 losses . append ( train_loss )

188 accuracies . append ( train_acc )

189 print (’iteration ={}, loss ={:.4f}, train_acc ={} ’. format (

iteration , train_loss , to_percent ( train_acc )))

190 plot_graphs (DFL_title , losses , accuracies )

191 test_acc = compute_accuracy (model , test_input , test_output )

192 print (’\ nTesting Accuracy = {} ’. format ( to_percent ( test_acc )))

193 return model

194

195 model = train_model (DFL_title , input , output , test_input , test_output )

196

197 #pip install syft ==0.2.9

198

199 import syft as sy

200 import torch as th

201 hook = sy. TorchHook (th)

202 from torch import nn , optim

203

204 local_client_devices = 6

205 client_devicess = []

206 for i in range ( local_client_devices ):

207 local_client_devices_name = ’client_devices {} ’. format (i)

208 client_devices = sy. VirtualWorker (hook , id = local_client_devices_name )

209 print ( client_devices )

210 print (str( client_devices . _objects ))

211 client_devicess . append ( client_devices )

212 secure_worker = sy. VirtualWorker (hook , id=" secure_worker ")

213 print ( secure_worker )

214 print ( secure_worker . _objects )
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215

216 def get_workers_names ( workers ):

217 return [ worker .id for worker in workers ]

218

219 def add_and_print_workers (worker , workers ):

220 print(’workers of {} = {} ’. format ( worker .id , get_workers_names ( workers )

))

221 worker . add_workers ( workers )

222

223 for i in range ( local_client_devices ):

224 workers = [ client_devicess [i2] for i2 in range ( local_client_devices ) if

i2 != i] + [ secure_worker ]

225 add_and_print_workers ( client_devicess [i], workers )

226 add_and_print_workers ( secure_worker , client_devicess )

227

228 n_samples = train_data .shape [0]

229 print ( n_samples )

230 print ( local_client_devices )

231 samples_per_client_devices = int (( n_samples + 0.5) / local_client_devices )

232 print ( samples_per_client_devices )

233

234 client_devices_features = []

235 client_devices_targets = []

236

237 train_data = th. tensor (train_data , dtype = torch.float32 , requires_grad =

True)

238 train_data

239

240 for i in range ( local_client_devices ):

241 train_data2 = train_data [i * samples_per_client_devices :(i + 1) *

samples_per_client_devices ]. clone (). detach (). requires_grad_ (True)

242 features = train_data2 [:, :6]. clone (). detach (). requires_grad_ (True)

243 print( features )

244 targets = train_data2 [:, 6][: , None ]. clone (). detach ()

245 print( targets )

246 client_devices_features . append ( features .send( client_devicess [i]))

247 print( client_devices_features )

248 client_devices_targets . append ( targets .send( client_devicess [i]))

249 print( client_devices_features )
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250

251 print (model)

252

253 def plot_federated_graphs (DFL_title , losses , accuracies ):

254 for i in range( local_client_devices ):

255 plt.plot( losses [i], label=f’client_devices {i}’)

256 legend = plt. legend (loc=’upper right ’, shadow =True)

257 plt.title (f"{ DFL_title } - Training Loss")

258 plt. xlabel (" Iterations ")

259 plt. ylabel (" Training Loss")

260 plt.show ()

261 for i in range( local_client_devices ):

262 plt.plot( accuracies [i], label=f’client_devices {i}’)

263 legend = plt. legend (loc=’lower right ’, shadow =True)

264 plt.title (f"{ DFL_title } - Training Accuracy ")

265 plt. xlabel (" Iterations ")

266 plt. ylabel (" Training Accuracy ( Percent %)")

267 plt.show ()

268

269 def compute_federated_accuracy (model , input , output ):

270 prediction = model( input )

271 n_samples = prediction .shape [0]

272 s = 0.

273 for i in range( n_samples ):

274 p = 1. if prediction [i] >= 0.5 else 0.

275 e = 1. if p == output [i] else 0.

276 s += e

277 return 100. * s / n_samples

278

279 iterations = 1000 #2000

280 worker_iterations = 8

281

282 def federated_learning (DFL_title , client_devices_features ,

client_devices_targets , test_input , test_output ):

283 model = LogisticRegression ()

284 criterion = torch.nn. BCELoss ( size_average =True)

285 optimizer = torch.optim.SGD(model. parameters (), lr= learning_rate )

286 losses = [[] for i in range ( local_client_devices )]

287 accuracies = [[] for i in range ( local_client_devices )]
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288 for iteration in range ( iterations ):

289 models = [model.copy ().send( client_devicess [i]) for i in range (

local_client_devices )]

290 optimizers = [torch.optim.SGD( params = models [i]. parameters (), lr =

learning_rate ) for i in range ( local_client_devices )]

291 for worker_iteration in range( worker_iterations ):

292 last_losses = []

293 for i in range ( local_client_devices ):

294 optimizers [i]. zero_grad ()

295 prediction = models [i]( client_devices_features [i])

296 loss = criterion (prediction , client_devices_targets [i])

297 loss. backward ()

298 optimizers [i]. step ()

299 loss = loss.get ().data.item ()

300 last_losses . append (loss)

301 for i in range ( local_client_devices ):

302 losses [i]. append ( last_losses [i])

303 train_acc = compute_federated_accuracy ( models [i],

client_devices_features [i], client_devices_targets [i])

304 accuracies [i]. append ( train_acc )

305 models [i]. move( secure_worker )

306 with th. no_grad ():

307 avg_weight = sum ([ models [i]. linear . weight .data for i in range(

local_client_devices )]) / local_client_devices

308 model. linear . weight .set_( avg_weight .get ())

309 avg_bias = sum ([ models [i]. linear .bias.data for i in range (

local_client_devices )]) / local_client_devices

310 model. linear .bias.set_( avg_bias .get ())

311 if iteration % 100 == 0:

312 losses_str = [’{:.4f}’. format ( losses [i][ -1]) for i in range (

local_client_devices )]

313 accuracies_str = [ to_percent ( accuracies [i][ -1]) for i in range(

local_client_devices )]

314 print (’Iteration ={}, losses ={}, accuracies ={} ’. format (iteration

, losses_str , accuracies_str ))

315 plot_federated_graphs (DFL_title , losses , accuracies )

316 test_acc = compute_accuracy (model , test_input , test_output )

317 print(’\ nTesting Accuracy = {} ’. format ( to_percent ( test_acc )))

318 return model
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319

320 model = federated_learning (DFL_title , client_devices_features ,

client_devices_targets , test_input , test_output )

Listing C.1: DFL models implementation on DNA sequence dataset
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